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EXECUTIVE SUMMARY 

In recent years, and as a result of the continued increase in travel demand across the border 

coupled with the need for tighter security and inspection procedures after September 11, border 

crossing delay has become a critical problem with tremendous economic and social costs. This 

project aims at taking advantage of the wealth of data, now available thanks to the recent 

advances in sensing and communications, to develop predictive models which can be used to 

predict the delay a passenger car or a truck is likely to encounter by the time the vehicle arrives 

at the border.  The project is building on initial work done by UB researchers, which broke down 

the problem into two steps: (1) the short-term prediction of the hourly traffic volume at the 

border; and (2) the development of queueing models which predict delay given knowledge of the 

predicted volume from step 1. 

 

In this project, UB TransInfo researchers completed the following three additional tasks: (1) the 

development of an Android smartphone application to collect, share and predict waiting time at 

the three Niagara Frontier border crossings; (2) the development of Machine Learning (ML) 

models for interval prediction of short-term traffic volume, which were then utilized to determine 

optimal staffing levels at the border; and (3) the development of deep learning models for 

predicting border delay directly from Bluetooth data collected at the three Niagara Frontier 

borders. 

 

The Android app developed under this project is called the Toronto Buffalo Border Wait Time 

(TBBW) app. The innovative app offers the user three types of waiting time estimates: (1) 

current waiting times collected at the crossings; (2) historical waiting times; and (3) future 

waiting time predicted for the next 15 minutes and updated every five minutes. For the current 

waiting time, the app can provide both the data collected by border crossing authorities as well as 

user-reported or “crowd-sourcing” data shared by the community of the app’s users. Reporting of 

the data could be done either manually or automatically through a GPS tracking function 

provided by the smartphone. For the historical waiting time, the app provides statistical charts 

and tables to help users choose the crossing with the likely shortest wait time. Future waiting 

times are predicted by a real-time stepwise traffic delay prediction model which consists of a 

short-term traffic volume forecasting model and a multi-server queueing model (these were 

developed by UB researchers in previous research). To validate the prediction functionality of 

the app, its predictions were compared against real-world delay measurements for the entire 

month of May, 2014.  The comparison showed that the model offered predictions with a mean 

absolute difference of 9.22 minutes. When considering only delays that are greater than 10 

minutes, the model has a mean absolute difference of only 6.95 minutes.  

 

For interval prediction, the study improved on a hybrid machine learning model based on 

Particle Swarm Optimization (PSO) and Extreme Learning Machine (ELM) neural network. The 

improved PSO-ELM models are developed for an hourly border crossing traffic dataset and 

compared to other state-of-the-art models. The results show that the improved PSO-ELM can 

always keep the mean PI length the lowest, and guarantee that the PI coverage probability is 

higher than the corresponding PI nominal confidence, regardless of the confidence level 

assumed. The study also proposes a comprehensive optimization framework to make staffing 
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plans for border crossing authority based on bounds of PIs and point predictions. The results 

show that for holidays, the staffing plans based on PI upper bounds generated much lower total 

system costs, and that those plans derived from PI upper bounds of the improved PSO-ELM 

models, are capable of producing the lowest average waiting times at the border.  

 

Finally, the study developed deep learning models for predicting border delay directly from blue 

tooth delay data collected at the Niagara Frontier borders.  Four deep learning techniques were 

utilized: Multilayer Perceptron (MLP), Convolutional Neural Networks (CNN), Long Short-

Term Memory Recurrent Neural Networks (LSTM-RNN), and Gated Recurrent Unit Recurrent 

Neural Networks (GRU-RNN). The prediction accuracies of these models were evaluated by 

computing the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-squared.  

The results suggest high-level accuracy of the deep learning techniques in predicting future 

traffic delays at the border crossings, with MAEs less than 3.5 minutes in predicting delays for 

up to 60 minutes into the future. However, no one deep learning technique emerged as a clear 

winner among others in predicting the delays. 

 

 

Key Words: Border Crossing; Waiting Time; Crowd Sourcing; Short Term Traffic Volume 

Prediction Model; Android; Particle Swarm Optimization; Extreme Learning Machine; 

Prediction Interval; Staffing Plan; Deep Learning; Multilayer Perceptron; Convolutional Neural 

Networks; Long Short-Term Memory Recurrent Neural Networks; Gated Recurrent Unit 

Recurrent Neural Networks. 
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INTRODUCTION 

Due to the continuous travel demand increase, coupled with tighter security and inspection 

procedures after September 11, border crossing delay has become a critical problem. As reported 

by the Ontario Chamber of Commerce, border crossing delay causes an annual loss of 

approximately $268.45 million for New York State.  For the whole U.S., the cost is much higher 

(OCC, 2005). According to a press release in 2008 given by the then U.S. Transportation 

Secretary, Mary E. Peters, border delays cost Canadian and US businesses as many as 14 billion 

dollars in 2007 (USDOT, 2007). Besides their negative economic impacts, border delays, and the 

associated idling of traffic awaiting inspection, have a significant environmental cost. A 10-year 

study by Lwebuga-Mukasa et al. (2002) showed a positive relationship between increased 

commercial traffic volume at Peace Bridge border crossing between downtown Buffalo, New 

York and Fort Erie, Ontario, and the increased use of asthma health care. 

  

To address these issues, transportation authorities have recently begun to provide travelers with 

information about current border crossing delays.  This is the case for example in the Buffalo-

Niagara region, for example, where the Niagara International Transportation Technology 

Coalition (NITTEC) has been providing such information to the public for years. In the early 

years, the waiting time was obtained based on very rough and approximate estimates of queue 

length. More recently, NITTEC is using blue-tooth identification technology to provide more 

accurate delay estimates to motorists, and the information is now updated every five minutes.  

 

Regardless of the method however, there is an inherent limitation associated with providing just 

the current border delay, which is likely to be quite different from the future wait time that the 

travelers would experience by the time they arrive at the border.  This is especially true if there is 

a significant lag between the time when travelers need to act on the information provided and the 

time of their arrival at the border. If the future waiting time can be predicted, it would be more 

informative for travelers and businesses to select the time to depart and the route to pursue. 

Moreover, with predicted border crossing delays, intelligent routing algorithms could be 

developed to optimally direct and route border-destined traffic in a fashion that would minimize 

the overall system travel time or the negative impacts on the environment. 

 

This project aims at taking advantage of the wealth of data, now available, to develop predictive 

models which can be used to predict the delay a passenger car or a truck is likely to encounter by 

the time the vehicle arrives at the border.  The project is building on previous work done by UB 

researchers, which broke down the problem into two steps: (1) the short-term prediction of the 

hourly traffic volume at the border; and (2) the development of queueing models which predict 

delay given knowledge of the predicted volume from step 1.  For short-term prediction of hourly 

traffic volume, UB researchers have previously developed several short-term traffic volume 

forecasting models (e.g., Lin et al., 2012; Lin et al., 2013; Lin et al., 2014a).  In addition, UB 

researchers developed transient multi-server queueing models, which take the predicted traffic 

volume and predicts the likely delay (Lin et al., 2014b). 

 

In this project, we build on our previous work just described and undertake three additional 

major tasks to improve on border crossing delay prediction, and to provide the tools needed to 
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better manage the border and improve traffic operations there.  These additional tasks focused 

on: (1) the development of an Android smartphone application to collect, share and predict 

waiting time at the three Niagara Frontier border crossings; (2) the development of Machine 

Learning (ML) models for interval prediction of short-term traffic volume (i.e., predicting an 

interval within which predicted delay is expected to fall with a certain probability); these 

intervals were then utilized to determine optimal staffing levels at the border; and (3) the 

development of deep learning models for predicting border delay directly from Bluetooth data 

collected at the three Niagara Frontier borders. 

 

Besides the Introduction and the Conclusions section, this report is divided into three major 

sections, each dedicated to discussing one of the three research tasks mentioned above.  It should 

be noted that the first two sections of the report represent a compilation of the material 

previously published by the authors in the following two papers, Lin et al. (2015) and Lin et al. 

(2018).  The third section is based on material included in Chauhan’s M.S. thesis submitted to 

the University at Buffalo in April 2019.    

 

AN ANDROID SMARTPHONE APP FOR BORDER CROSSING WAIT 

TIME 

The extremely data-rich environment of today provides an excellent opportunity for data mining 

and for extracting useful insights to help improve transportation systems’ efficiency.  One more 

factor that deserves consideration is the emergence of social media applications using 

smartphones which allow people to easily create, share and exchange information. For example, 

Waze is a community-based traffic and navigation app, acquired by Google in 2013, where 

drivers can share real-time traffic and road information, saving travel time, gas and money on 

their daily commute.   

 

In this part of the study, an Android smartphone application (app) called the Toronto Buffalo 

Border Wait Time (TBBW) was developed, to allow for sharing waiting time among travelers of 

the three Niagara Frontier border crossings, namely the Lewiston-Queenston Bridge, the 

Rainbow Bridge, and the Peace Bridge. Three types of waiting times are offered based on users’ 

preferences, including the current waiting time, the historical waiting time, and the future waiting 

time predicted by a real-time traffic delay prediction model. 

  

For the current waiting time, the app can provide both the data collected by the border crossing 

authorities and the user-reported or “crowd-sourcing” data shared by the community of users of 

the app. For the historical waiting time, the app provides statistical charts and tables to help users 

choose the crossing with the likely shortest waiting time. Moreover, the app can also provide 

future border waiting time for the next 15 minutes with an updating frequency of five minutes.  

The future waiting times are predicted by a stepwise delay prediction model that consists of a 

short-term traffic volume prediction model for predicting the incoming traffic flow and a 

queueing model for predicting border inspection resulted delays. 

 

PURPOSE AND SCOPE 
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The Niagara Frontier International Border includes three main bridges connecting Western New 

York, U.S. to Southern Ontario, Canada, namely the Lewiston-Queenston Bridge, the Rainbow 

Bridge, and the Peace. Figure 1 shows the yearly traffic volume going through Peace Bridge (one 

of the three crossings) from 2009 to 2013. As can be seen, for each direction to U.S. or to 

Canada, there are more than two million passenger vehicles and around 500,000 commercial 

vehicles going through Peace Bridge every year. This highlights the very large market of 

potential users and the great potential effect of this app. Besides that, thanks to the predictive 

capabilities of TBBW, it can help border crossing and customs agencies determine the optimal 

staffing level and the number of inspection booths needed to keep the border delay below a 

certain threshold. 

 

Figure 1a. Yearly traffic volume through Peace Bridge to U.S. 

 

Figure 1b Yearly traffic volume through Peace Bridge to Canada 

Figure 1. Yearly traffic volume of Peace Bridge from 2009 to 2013 
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The TBBW app was designed to collect, share and estimate border crossing waiting time by 

taking advantage of multiple data sources and advanced traffic prediction methods. Figure 2 

summarizes the characteristics of TBBW (shown in the green color), in comparison with the 

existing border crossing delay dissemination method (shown in the blue color). As can be seen, 

TBBW provides several options for border crossing delay estimates including, user-reported or 

“crowd-sourcing” wait time, historical, and future wait time, in addition to the current waiting 

time reported by the authorities. Travelers and border management authorities can then make 

better decisions based on this information. 

 

Border Crossing 

Current waiting time 
(provided by the bridge 

authorities or users)  

Historical waiting time 
(documented by TBBW)  

Future waiting time 
(predicted by the stepwise 

border crossing delay model) 

Toronto Buffalo Border Wait Time (TBBW) App  

For individuals: save time, 

gas and money 

For the system: improve 

economic competitiveness 

and minimize environmental 

impacts 

Current waiting time 
(Official method) 

Website 

Telephone 

Variable Message Board 

Radio 

Figure 2. Comparison of TBBW with the Other Ways to Share Border Waiting Time 

 

DATASETS 

Two types of data are used to develop the TBBW app. The first dataset contains the hourly 

traffic volume data collected at the Peace Bridge since 2003. This is used as the input to develop 

the stepwise border delay prediction model and to predict the future waiting times. The second 

Travelers 
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dataset captures the current waiting times collected and maintained by the border crossing 

authorities. Such data are used as one source of the current waiting times provided by the app. In 

addition, they are stored for historical data analysis and also used as the ground truth to assess 

the performance of the border delay prediction model. All data are available for download from 

the websites maintained by the Peace Bridge authority and Niagara Falls Bridge Commission 

(Peace Bridge, 2014; Niagara Falls Bridge Commission, 2014). 

 

INNOVATIVE FEATURES  

The TBBW app was developed on the Android platform, the most popular mobile operating 

system used in the U.S. TBBW is available from the Google Play store. The developed TBBW 

app is innovative in terms of its ability: (1) to share current waiting time; (2) to store and analyze 

historical waiting time; and (3) to predict future waiting time, as described below.  
 

Sharing Current Waiting Time Function 

The app employs two ways to collect current waiting time information. The first way 

involves downloading the waiting time data from the websites maintained by the Buffalo 

and Fort Erie Public Bridge Authority and the Niagara Falls Bridge Commission. At the 

time of the study, the current waiting time for Peace Bridge and Lewiston Queen Bridge 

were provided and updated every five minutes, and for Rainbow Bridge, it was updated 

every one hour. The information is collected and uploaded in real time to the app as shown 

in  

Figure 3a. 

 

  

 

 

 

a) Official Website b) Manual Share c) Automatic Share (GPS) 

 

Figure 3. Three ways to share current waiting time 
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Because the official current waiting time data is lagged (particularly for the Rainbow 

Bridge where it is only updated every hour), the app also provides a second way to collect 

the current waiting time data utilizing crowd sourcing ideas. Specifically, users are allowed 

to report their experienced border crossing delays that can be then processed and 

broadcasted to other users for their benefits, called crowd sourcing. The same concept has 

been widely applied in other traffic information sharing apps, such as the pre-mentioned 

Waze and the bus arrival time sharing app Tiramisu (Zimmerman et al., 2011). In TBBW, 

users can share their waiting times by manually inputting the data as shown in  

Figure 3b. They can also choose to automatically share their waiting times through their 

GPS-enabled smartphones as shown in  

Figure 3c. This option is necessary because if users are driving, it is unsafe and illegal to 

manually input waiting time. 

 

Utilizing Historical Waiting Time Function  

Mining and analyzing historical border crossing waiting time data in a proper manner can 

provide additional insight to travelers. In TBBW, three types of graphs and charts are created 

based on an underlying historical waiting time database.  

 

  

 
a) Average Waiting Times for Each 

Day of Week for Each Bridge 

b) Comparison of Waiting Times at 

Three Bridges for the Past Hour 

 

c) Waiting Times Sharing History by 

the registered user himself/herself 

Figure 4. Three ways to utilize historical waiting time 

As can be seen in Figure 4a, for each bridge, the average waiting times for each day of week are 

calculated and shown in one chart. This is the long term trend based on the historical data of the 

past month. The TBBW app also allows the users to compare the waiting times of the three 

bridges, based on the historical data of the past one hour, as shown in Figure 4b. Finally, because 

users may want to make decisions based on their own previous experiences, registered users can 

view their waiting times as another reference as shown in Figure 4c.  
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Predicting Future Waiting Time Function  

Finally, in addition to current and historical analyses of wait times, the app is designed to predict 

the likely waiting time in the next 15 minutes (this estimate is also updated every 5 minutes). 

Predicting is based on utilizing the stepwise border crossing delay prediction model previously 

developed by the authors in prior research (Lin et al., 2012; Lin et al., 2013; Lin et al, 2014a). 

The following section will briefly describe this model and its prediction performance. 

 

Stepwise Delay Prediction Model: The stepwise border delay prediction model is composed of 

two sequential modules as shown in Figure 5 below. The first module is designed to predict the 

traffic volume arriving at the border crossings for each time period (Lin et al, 2012; Lin et al, 

2013; Lin et al., 2014a). Note that the economic indicators and weather and incident shown 

information in Figure 5 were not used in the current version of the short term traffic volume 

prediction model; we hope to address this in our future research). Given the predicted traffic 

volume as input, the second model estimates the corresponding waiting time by solving a 

transient multi-server queueing problem (Lin et al, 2014b). 

 

 
Figure 5. Framework of the stepwise delay prediction model 

 

Border Crossing Traffic Volume Prediction Module: Three short-term traffic volume prediction 

methods have been previously tested by the authors on the border crossing traffic volume data 

for the Peace Bridge, namely seasonal Autoregressive Integrated Moving Average (SARIMA), 

support vector regression (SVR), and an enhanced spinning network (SPN) (Lin et al., 2012; Lin 

et al., 2013; Lin et al., 2014a). In this app, SARIMA is chosen as the prediction method because 

of its easiness of implementation and its moderate computational cost.  As previously reported 

by the authors, for a testing dataset with 1,905 hourly traffic volume points, the mean absolute 

percentage error (MAPE) was found to be equal to 16.38% (Lin et al., 2013).  It needs to be 

noted here that the short-term traffic volume prediction module was built using data collected 

from the Peace Bridge, due to the fine temporal resolution available (i.e., on the hourly basis). 

The traffic volumes for the other bridges were only available to the study on a daily basis at the 

time, and were thus deemed not sufficient for accurate waiting time prediction.  
 
Transient Multi-server Queueing Module: In the authors’ previous work, 700 observations of 

vehicular inter-arrival times and 571 observations of the service times (i.e. inspection time) were 
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collected from December 19, 2011 to January 10, 2012 at the Peace Bridge. Based on the 

collected observations, it was determined that the distribution of the inter-arrival times is best 

captured by an exponential distribution and that the service time distribution is best described as 

an Erlang distribution with order equal to 2 (Lin et al., 2014b). With these findings, an 

𝑀/𝐸𝑘=2/𝑛 queueing model was developed to capture the queueing process at the border 

crossing. The transient solution of this multi-server queueing model was then derived and used to 

predict the border crossing waiting time. 

 

Because the TBBW app requires that the predicted wait time be updated every five minutes, the 

predicted hourly traffic volume was split into a finer resolution (e.g., a five-minute resolution) 

before they were used for border wait time prediction by the queueing models. With the inter-

arrival distribution known, this was done using the inverse cumulative function of the inter-

arrival exponential distribution 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥, where λ is the predicted hourly volume or 

arrival rate.  

 

Other input requirements of the queueing model included the number of inspection booths.  

However, the number of open inspection stations is typically not available ahead of time. To 

solve the problem, our approach at the moment involves running the queueing model for 

different numbers of open stations (1 to 10 in this study), and trying to estimate how many 

stations are actually open. Other venues to be explored in the near future are information offered 

by users or directly by the U.S. Customs and Border Protection.  The readers can find more 

detailed information about these queueing models in the reference (Lin et al., 2014b).  
 
Prediction Results: The TBBW interface of the predicted waiting time for passenger vehicles 

from Canada to U.S. through the Peace Bridge is shown in Figure 6. 

 

Figure 6. Predicted border crossing waiting time 

 

In order to test the prediction performance of the stepwise delay prediction model, the research 

compared the predicted waiting times with the historical waiting times recorded by the border 
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authorities from 7:00 AM to 9:00 PM for each day of the whole month of May, 2014. Because 

the future waiting time is updated every five minutes, there should be a total of 5,580 predicted 

values for the month. However, because of several missing data points from the field 

observations (e.g., when the server was down and the official waiting time was recorded as 

“N/A”), a total of 3,103 observations were deemed valid for assessing the prediction model’s 

performance.  

 

The mean absolute difference (minutes) between the predicted waiting times and the officially 

recorded waiting times is shown in Table 1. As can be seen, the mean absolute difference for the 

whole dataset is 9.22 minutes. After checking the officially recorded waiting times, we find that 

there were a total of 2,363 data points where the wait times was recorded as being equal to 0 

minutes, and the remaining 740 points had delays greater than or equal to 10 minutes.  After 

discussions with the border crossing authorities, it was revealed that their practice was to report 

any wait time which was less than 10 minutes as 0 minutes delay.  Given this, and in order to 

provide for a true evaluation of the predictive model accuracy, the testing dataset was split into 

two groups.  The first group (2,363 data points) had an official reported delay of 0 minutes, 

which meant that the delay could be anywhere between 0 and 10 minutes.  For that group, the 

mean absolute difference between the model’s predictions and the officially reported delay times 

was as high as 9.94 minutes (it should be clear now that that absolute error is exaggerated, since 

the actual delay could have been anywhere between 0 and 10 minutes). The second group 

included points where the officially reported wait time was greater than or equal to 10 minutes.  

For that second group, the mean absolute difference was only 6.95 minutes.  

 

Table 1. Prediction Performance of the Stepwise Delay Prediction Model 

 

Data Group Number of data points Mean Absolute Difference 

(minutes) 

Whole Dataset  3,103 9.22 

Officially Recorded Waiting 

Time = 0 minutes (denoting 

less than 10 minute delays) 

 

2,363 9.94 

Officially Recorded Waiting 

Time >=10 minutes 

 

740 6.95 

 
For a more disaggregate view of the performance of the delay prediction model, the predicted 

waiting times and the historical waiting times for the peak hours 18:00-20:00 on April 22, 2014 

are compared and shown on Figure 7. As can be seen in Figure 7, the mean absolute difference 

between the predicted waiting times and the observations is about 6.6 minutes. Most of the time, 

the difference is within 10 minutes, except for 19:40 for which the difference is around 20 

minutes. This is most probably the result of the opening of additional inspection stations at that 

time without the model being aware of that (the reader may recall that there is currently no easy 

way for the app to discern the actual number of inspection stations open; it is hoped that in the 

future such information may be obtained from the Customs and Border Protection agencies).  

Another reason could be that the historical waiting time detected by the Bluetooth technology is 
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lagging in time, since the Bluetooth technology provides an estimate of the delay at the time a 

vehicle had joined the queue some time prior to the reporting time (that time is actually equal to 

the time it took the vehicle to exit the system). 

 

 

 
Figure 7. Prediction Performance for the peak hours of 18:00-20:00 on April 22, 2014 

 

 
Front-End Service Processes of Toronto Buffalo Border Wait Time (TBBW) app 

Figure 8 shows the details of the TBBW front-end service processes behind the innovative 

functions described above.  
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Remote Database 

(GoDaddy), 24/7 

Border Crossing Authority Websites 

web crawler to get the 

current waiting times 

Run the step-wise border 

crossing waiting time 

prediction model. 24/7 

upload the current and  

predicted waiting times  

Upload the shared 

waiting times 

Download the current, 

historical and 

predicted waiting 

times. 

Store all the current, 

historical and future 

waiting times 

Figure 8. Flow Chart of TBBW Front-End Service Processes 
 

As can be seen, there is a local computer which continuously runs the web crawler program to 

download the current waiting times from the official border crossing authority websites.  That 

computer also continuously runs the step-wise border crossing waiting time for 24 hours per day. 

The current and predicted waiting times are then uploaded to the remote database which is 

hosted by GoDaddy (GoDaddy, 2014), an internet domain registrar and web hosting company . 

Unlike the local computer, this remote server can be guaranteed to be running all the time, which 

is important for the app users, to allow them to interact with the server at any time. The app users 

can upload their own experienced waiting times to the remote server, and can also download 

different kinds of waiting times from it. The historical graphs and charts are generated at the 

client side (i.e., the android smart phone).   
 

RISKS AND CHANLLENGES 

This section will summarize the risks and challenges encountered while developing the app.  

Some of those challenges have been addressed, while others are left for future work.  

 

The Need for More Data 

A critical piece of information for wait time prediction which is missing at this point is the 

number of open lanes or inspection booths.  Although the delay prediction model can estimate 

the number of open lanes, it would be better and more accurate if the real value were to be 

provided by the U.S. Customs and Border Protection agencies.  

 

Crowd Sourcing 
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As with any contribution-based crowd sourcing information system, a risk exists of low 

motivation to participate and of abuse (Steinfeld et al., 2011). To overcome this problem for 

TBBW, one can design a set of reward and penalty rules on the basis of the registration and login 

function. For example, when users share their border crossing waiting time with others, they can 

get some virtual points, and every period of time the user with the highest rank may be rewarded. 

Abuse can also be prevented through penalties. For example, users who intentionally share 

wrong border crossing waiting times can be identified and filtered by setting a threshold for the 

difference between the value provided by the user and a “best” estimate based on a combination 

of the officially reported waiting time and the average waiting time from other users.  Users who 

abuse the system may also be restricted from sharing information. 

   

GPS Location  

Some privacy concerns may arise regarding the ability to share waiting time in an automatic 

fashion through the GPS location sharing function.  To address this, the TBBW app was 

designed so that it does not store any of the users’ GPS locations data; these data are only used to 

calculate the distances of the travelers from the borders and their speed, so an approximate 

waiting time can be estimated. 

 

CONCLUSIONS AND FUTURE WORK 

This part of the study introduced an android app TBBW which combines sophisticated 

transportation models with emerging mobile computing technologies to solve the wait time 

border crossing problem.  The performance of the prediction model was assessed by comparing 

its predictions to those reported by the authorities for month of May, 2014.  The comparison 

demonstrated that the predictions are quite accurate, with a mean absolute difference of only 6. 

95 minutes for delays greater than or equal to 10 minutes.   

 

Several future directions are suggested by the current work. First, at the moment, the TBBW app 

is only predicting the delay for the next 15 minutes, it would be better to make the prediction 

horizon a user-specified value.  Second, although the app is currently designed for the Niagara 

International Frontier Borders, it can also be easily extended and applied to other US-Canadian 

or US-Mexico borders. The app can even be extended to predict airport delay, and delay at many 

other similar queueing systems, in the future.  
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A HYBRID MACHINE LEARNING MODEL FOR INTERVAL 

PREDICTION OF SHORT-TERM BORDER CROSSING TRAFFIC 

VOLUME 

PREDICTION INTERVAL VERSUS SINGLE-VALUE PREDICTION 

Most previous studies on short-term traffic volume prediction have focused on a single-value 

prediction of the traffic volume, and relied almost exclusively on the prediction error when 

assessing the effectiveness of a modeling approach (Karlaftis and Vlahogianni, 2011). Given the 

nonlinearity of traffic flow, traditional single-value prediction approaches are unfortunately 

almost guaranteed to result in high prediction errors, which could have significant negative 

impact on the effectiveness of traffic management schemes. In such a case, an accurate and 

reliable prediction interval (PI) with upper bound and lower bound would be more useful to 

traffic operators.  

 

For forecasting applications in various domains, the use of PIs is quite useful because PIs try to 

capture the uncertainty associated with predicting the next observation, by asserting that the next 

observation will be contained within a given interval with a given probability.  PIs are 

particularly useful in operational contexts where it is desired to make staffing plans. Jongbloed 

and Koole (2001) showed that point prediction of the call volume to a call center cannot 

guarantee the desired service quality at peak hours (calls need to be answered quickly on average 

in between 10-20 seconds). To address this, the researchers computed the PIs for the arrival rates 

and adapted the workforce for the call center based on the results.  

 

Similarly, Kortbeek et al. (2015) introduced PIs to develop flexible staffing policies that would 

allow hospitals to dynamically respond to their fluctuating patient population by employing float 

nurses. PIs also have applications in the energy industry, especially in regard to wind-generated 

electricity. For example, owing to the variability of wind production, PIs can be used to construct 

contracts for supply in an auction market (Pinson et al., 2007). Within the transportation domain, 

PIs have been used for bus and freeway travel times prediction (Khosravi et al., 2011), who 

argued that PIs of travel times are more meaningful because of the underlying complex traffic 

processes, and given the data quality used to infer travel time. There are also a few studies that 

have generated PIs for short-term traffic volume forecasting (Kamarianakis et al., 2005; Guo et 

al., 2014; Zhang et al., 2014), and for real-time traffic speed uncertainty quantification (Guo and 

Williams, 2010). 

 

From a technical standpoint, PIs can be derived in a number of ways, but with significant 

difference in terms of interpretation. The first approach is a frequentist approach, which assumes 

that the observation is itself fixed but the interval itself is random and related to the sample 

dataset (Cryer and Chan, 2008). A PI with a probability of 95% asserts that were the experiment 

to be conducted many times, about 95% of those would contain the unknown observation. 

Autoregressive–moving-average (ARMA) model is one of the well-known models based on this 

approach. The second approach is a Bayesian approach. Different from the frequentist 

approaches, Bayesian techniques assume the observation is random and has a probability 

distribution. In that case then, the PI is assumed to be fixed and is in fact derived from a posterior 
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distribution, estimated from a prior distribution and from previous observations. The Kalman 

Filter family of models is the classical example for the Bayesian approach.    

Among the key challenges of generating PIs is how to quantify the variance. The assumption of 

constant variance, e.g. ARMA model, compromises the forecasting ability (Zhang et al., 2014). 

One might reasonably expect variances to vary along with a mean in a time series, especially in 

short-term traffic flow data. Zhang et al. (2014) pointed out that the variance of traffic flow 

becomes large during an accident, congestion, or other abnormal situations that last for a certain 

period. This is known as time-dependent conditional heteroskedasticity which means that the 

variance, conditional on past data, propagates according to some model. Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) has been proposed to capture the time-

dependent variance (Bollerslev, 1986). Kamarianakis et al. (2005) applied GARCH to provide 

PIs for 7.5-min average traffic flow data.  

 

Zhang et al. (2014) further pointed out that the GARCH model ignores the empirically important 

asymmetric effect in traffic data. Instead, they applied the Glosten-Jagannathan-Runkle GARCH 

(GJR-GARCH) proposed by Glosten et al. (1993), to allow the conditional variance to respond 

differently to the past negative and positive innovations. A hybrid model was proposed by the 

researchers to provide point predictions as well as PIs: spectral analysis for periodic trend, 

ARIMA for deterministic part and GJR-GARCH model for volatility.  

 

In this part of the study, in this paper, we apply and improve a hybrid machine learning model 

called PSO-ELM for interval prediction of short-term traffic volume. Extreme learning machine 

(ELM) is a novel feedforward neural network with advantages such as, extremely fast learning 

speed and superior generalization capability (Huang et al., 2006). Furthermore, particle swarm 

optimization (PSO), a well-known heuristic and population based optimization method, is 

applied to adjust the parameters of ELM in an efficient and robust way to minimize a multi-

objective function. The multi-objective function introduces two quantitative criteria called 

reliability and sharpness to evaluate the PIs. Simply speaking, the PSO-ELM model treat an 

interval as two points to be estimated. The weights of the neural network ELM are learned and 

optimized through PSO to contain the observations with a desired frequency (reliability) and to 

be as narrow as possible (sharpness). In this machine learning approach, the conditional variance 

is not a concern anymore.  

 

The PSO-ELM model has been applied to wind power prediction (Wan et al., 2014). Based on 

the characteristics of the short-term traffic prediction problem, in this study, we improve on the 

PSO-ELM previously used by Wan et al. (2014), by making the parameters update in an on-line 

approach, and also by redefining the calculation of reliability.  We then compare the improved 

PSO-ELM model against: (1) the original PSO-ELM of Wan et al (2014); and (2) the hybrid 

model by Zhang et al. (2014). The comparison is made utilizing an hourly short-term traffic 

volume dataset from the Peace bridge, one of the busiest US-Canadian borders. As will be shown 

in the paper, the results show that the improved PSO-ELM models can always keep the mean PI 

length the lowest, while guaranteeing that the PI coverage probability is higher than the 

corresponding PI nominal confidence level like 90%, 95%, or 99%. To the best of our 

knowledge, this is the first attempt to apply neural network based models and multi-objective 

optimization to interval prediction of short-term traffic volume forecasting. 
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Furthermore, another main contribution of our study is that we propose a comprehensive 

optimization framework to make staffing level plans for border crossing authorities, based on the 

interval predictions and point predictions of short-term traffic volume. Although there have been 

a few studies that looked at the optimal staffing level problem for border crossings (Yu et al., 

2016; Lin et al., 2014b), none of them considered future traffic predictions in developing the 

border staffing level plans. Combining our previous studies of a transient multi-server queueing 

model for border crossings (Lin et al., 2014b), the framework we propose in this study makes 

optimal staffing level plans for a border crossing authority, based on the different types of short-

term traffic predictions considered in this study. These are the PI upper or lower bounds from (1) 

the improved PSO-ELMs; (2) Zhang et al. (2014) model; and (3) point predictions from Zhang et 

al. (2014) model.  

 

Experiments are then designed and repeated so that the border crossing port is operated under 

different optimal staffing plans with real observed traffic demand from the morning period from 

7:00-12:00 from two typical days; (1) a holiday (President’s Day, 02/17/2014); and (2) a normal 

weekday (02/10/2014). The hourly average waiting times and the total system costs (operation 

cost and traveler waiting cost) are recorded and compared. As we will be elaborated on later in 

the report, our results show that during holiday time periods, making plans based on upper 

bounds of PIs from the improved PSO-ELMs generated the lowest average waiting times. 

Moreover, applying the plans from upper bounds of PIs generally produced much lower total 

system costs comparing to those using PI lower bounds. For the normal Monday, the staffing 

plans developed based on PI upper bounds resulted in no delay what so ever, but the total system 

costs were slightly higher than the costs of the plans developed based on point predictions from 

Zhang et al. (2014). For both the holiday and normal Monday scenarios, among the staffing level 

plans developed based on PI lower bounds, the ones from the improved PSO-ELMs performed 

the best, with an acceptable level of service and system costs close to the staffing plans 

developed based on point predictions. 

 

The rest of this section of the report is organized as follows. The next sub-section provides a 

detailed introduction of the PSO-ELM model, the multi-objective optimization function utilized 

and the improvements this study introduced to the original PSO-ELM. This is followed by a 

description of the dataset used. The results of the interval prediction using the improved PSO-

ELM are then presented and compared against the original PSO-ELM and the Zhang et al. 

(2014) model. Following this, the PIs and point predictions are utilized to develop border 

crossing optimal staffing plans; the performances of the different plans developed are then 

compared, in terms of total system cost and average waiting times. Finally, the study’s 

conclusions are discussed and recommendations for future research are provided.  

 

METHODOLOGY  

Prediction interval 

A Prediction Interval (PI) provides a lower bound and an upper bound for the future target value 

𝑦𝑖 given an input 𝑋𝑖. The probability that the future targets can be enclosed by the PIs is called 

the Prediction Interval Nominal Confidence (PINC): 

 𝑃𝐼𝑁𝐶 = 100(1 − 𝛼)% 

Equation 1 
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where,  

the usual value of 𝛼 could be 0.01, 0.05 or 0.10. 

Obviously, the selection of 𝛼 in PINC will impact the PIs. The PIs under different PINC levels 

can then be represented as follows: 

 

 𝐼𝑖
𝛼 = [𝐿𝑖

𝛼 , 𝑈𝑖
𝛼]  

Equation 2 

where,  

𝐿𝑖
𝛼 and 𝑈𝑖

𝛼 denote the PI lower and upper bounds of target value 𝑦𝑖 given 𝛼 . 

PI evaluation criteria 

The reliability and sharpness metrics are introduced in the PSO-ELM (Wan et al.,2014) to 

evaluate the PIs. The normalized values of these metrics are useful in the minimization of the 

multi-objective function, as will be discussed later. 

 

Reliability: Reliability is regarded as a major property for validating PI models. Based on the PI 

definition, the future targets 𝑦𝑖 are expected to be covered by the constructed PIs with a 

probability equal to the PINC 100(1 − 𝛼)%. However, the actual PI Coverage Probability 

(PICP) may be different from the pre-defined PINC, calculated for the dataset, as follows: 

 

 𝑃𝐼𝐶𝑃 =
1

𝑁
∑ 𝐷𝑖

𝛼𝑁
𝑖=1  

Equation 3 

where,  

𝑁is the dataset size; 

𝐷𝑖
𝛼 is a dummy variable equal to 1, if the real observation 𝑦𝑖 is within the PI 𝐼𝑖

𝛼, 

otherwise, 𝐷𝑖
𝛼 = 0. 

 

The PSO-ELM model tries to force the calculated PICP to be as close as possible to PINC. The 

absolute average coverage error (AACE) is applied as the reliability evaluation criterion as 

shown in Equation 4 .  

 

 𝑅𝛼 = 𝑎𝑏𝑠(𝑃𝐼𝐶𝑃 − 𝑃𝐼𝑁𝐶)                                                                     

Equation 4 

Naturally, the smaller the 𝑅𝛼, the higher the reliability.  

 

Sharpness: Reliability considers only coverage probability. If reliability were to be utilized as the 

only model evaluation criterion, high reliability could be easily achieved by increasing the width 

of the PI, rendering the PI useless in practice (since a wide PIs may not provide accurate 

quantifications of uncertainties involved in the real-world processes (Wan et al., 2014; Zhang et 

al., 2014)). A sound PI model should be able to provide reliable, as well as sharp intervals. 

Sharpness thus should be considered as a second criterion, alongside reliability.  

 

Suppose the width of PI 𝐼𝑖
𝛼 is represented by 𝑊𝐼𝑖

𝛼.  The width measures the distance between the 

upper bound and lower bound through 
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 𝑊𝐼𝑖
𝛼 = 𝑈𝑖

𝛼 − 𝐿𝑖
𝛼                                  

Equation 5 

The sharpness of PI 𝐼𝑖
𝛼 , denoted by 𝑆𝑖

𝛼, can thus be calculated as 

 𝑆𝑖
𝛼 = {

𝑤1𝛼𝑊𝐼𝑖
𝛼 + 𝑤2[𝐿𝑖

𝛼 − 𝑡𝑖],   𝑖𝑓 𝑦𝑖 < 𝐿𝑖
𝛼    

 𝑤1𝛼𝑊𝐼𝑖
𝛼 ,                             𝑖𝑓 𝑦𝑖  𝜖 𝐼𝑖

𝛼      

𝑤1𝛼𝑊𝐼𝑖
𝛼 + 𝑤2[𝑡𝑖 − 𝑈𝑖

𝛼], 𝑖𝑓 𝑦𝑖 > 𝑈𝑖
𝛼  

                                      

Equation 6 

where,  

𝑤1 and 𝑤2 are two user defined weights. 

 

Equation 6 considers the width of the PI 𝑊𝐼𝑖
𝛼 weighted by 𝑤1 for all three different scenarios. 

Additionally, when the true value 𝑦𝑖 is lower than the lower bound, or higher than the upper 

bound, an extra penalty calculated by the distance of that point to the bound and adjusted by 𝑤2  

is included. This is to prevent the possibility that the PIs become too “narrow”. In practical 

applications, the 𝑤1 and 𝑤2 need to be carefully tuned. 

 

The sharpness of PIs over the entire dataset can be calculated by taking the average of the 

normalized 𝑆𝑖
𝛼, represented by 𝑆𝑖,𝑛𝑜𝑟𝑚

𝛼 , using Equation 7and Equation 8: 

 𝑆𝛼  =
1

𝑁
∑ 𝑆𝑖,𝑛𝑜𝑟𝑚

𝛼𝑁
𝑖=1                                    

Equation 7 

where, 

 𝑆𝑖,𝑛𝑜𝑟𝑚
𝛼 =

𝑆𝑖
𝛼−min (𝑆𝑖

𝛼)

max(𝑆𝑖
𝛼)−min (𝑆𝑖

𝛼)
                              

Equation 8 

Hybrid PSO-ELM model 

 

Extreme Learning Machine: ELM is a single hidden-layer feedforward neural network proposed 

by Huang et al. (2006). It has become very popular in recent years. Previous studies have shown 

that ELM training is extremely fast because of the simple matrix computation, and can always 

guarantee optimal performance (Huang et al., 2006; Wan et al., 2014). In addition, ELM can 

overcome many limitations of traditional gradient based NNs training algorithms, such as finding 

local minima, overtraining and so on. The basic principle of ELM is as follows: 

 

Given a short-term traffic volume dataset, suppose the traffic volume at time step 𝑖 is 𝑥𝑖, using 

the traffic volumes from the previous time steps, we can construct a feature vector 𝑋𝑖 = [𝑥𝑖−𝑛+1,
… , 𝑥𝑖−1, 𝑥𝑖] and the corresponding target value 𝑦𝑖, e.g. it could be the traffic volume in the next 

time step. Finally, suppose we have a dataset with 𝑁 distinct samples {(𝑋𝑖, 𝑦𝑖)}𝑖=1
𝑁 , where the 

inputs 𝑋𝑖 ∈ 𝑅𝑛 and the targets 𝑦𝑖 ∈ 𝑅𝑚, the following equation can be used to find the optimal 

structure of neural network ELM and approximate the 𝑁 samples with zero error: 

 

 𝑓𝐾(𝑋𝑖) = ∑ 𝛽𝑗𝜑(𝑎𝑗 ∗ 𝑋𝑖 + 𝑏𝑗) = 𝑦𝑖
𝐾
𝑗=1 , 𝑖 = 1, … , 𝑁    

Equation 9 

where, 

𝐾 is the number of hidden neurons; 

𝜑(. ) is the activation function (e.g. a sigmoid function); 
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𝑎𝑗 = [𝑎𝑗1, 𝑎𝑗2, … , 𝑎𝑗𝑛]𝑇 represents the weight vector connecting the 𝑗th hidden neuron and 

the input neurons;  

𝑏𝑗 denotes the bias of the 𝑗th hidden neuron; 

𝜑(𝑎𝑗 ∗ 𝑋𝑖 + 𝑏𝑗) is the output of the 𝑗th hidden neuron with respect to the input 𝑋𝑖;  

𝛽𝑗 = [𝛽𝑗1, 𝛽𝑗2, … , 𝛽𝑗𝑚]𝑇 represents the weights at the links connecting the 𝑗th hidden 

neuron with the 𝑚 output neurons.  

 

For simplicity, Equation 9 can be represented as: 

 

 𝐻𝛽 = 𝑌           
Equation 10 

 

where, 

 𝐻 = [
𝜑(𝑎1 ∗ 𝑋1 + 𝑏1) ⋯ 𝜑(𝑎𝐾 ∗ 𝑋1 + 𝑏𝐾)

⋮ ⋱ ⋮
𝜑(𝑎1 ∗ 𝑋𝑁 + 𝑏1) ⋯ 𝜑(𝑎𝐾 ∗ 𝑋𝐾 + 𝑏𝐾)

]

𝑁×𝐾

     

Equation 11 

 

Each row of 𝐻 is the outputs at the 𝐾 hidden neurons for input 𝑋𝑖, 𝑖 = 1, … , 𝑁. 𝛽 is the matrix of 

weights at the links connecting hidden layer and output layer and 𝑌 is the matrix of targets, 

respectively represented as 

 

 𝛽 = [
𝛽1

⋮
𝛽𝐾

]

𝐾×𝑚

           

Equation 12 

 𝑌 = [

𝑦1

⋮
𝑦𝑁

]

𝑁×𝑚

           

Equation 13 

 

Note that in ELM, the weights 𝑎𝑗 and biases 𝑏𝑗 for the 𝐾 hidden neurons are randomly chosen, 

and are not tuned during the training process. This is very different compared to the traditional 

gradient-based training algorithm of NNs. In this way, ELM can dramatically save the learning 

time. The training of ELM is simply to find 𝛽∗ to minimize the objective function, 

 

 ‖𝐇(𝑎1
∗, … , 𝑎𝑘

∗ , 𝑏1
∗, … , 𝑏𝑘

∗)𝛽∗ − 𝑇‖ = min
𝛽

‖𝐇(𝑎1, … , 𝑎𝑘, 𝑏1, … , 𝑏𝑘)𝛽 − 𝑌‖    

Equation 14 

where, 

‖. ‖ is the function to calculate the Euclidean distance. 

 

Finally, a unique solution of 𝛽∗ can be derived through a matrix calculation: 

 𝛽∗ = 𝐻†𝑌           
Equation 15 

where, 
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𝐻† is the Moore-Penrose generalized inverse of the hidden layer output matrix 𝐻, which can 

be derived through the singular value decomposition (SVD) method. 

It is worth mentioning that to apply the ELM model for interval prediction, the target value 𝑦𝑖 in 

the training dataset {(𝑋𝑖, 𝑦𝑖)}𝑖=1
𝑁  needs to be replaced with a pair of target bounds �̂�𝑖

−and �̂�𝑖
+, 

which can be produced by slightly increasing or decreasing the original 𝑦𝑖 by ±𝜌%, 0 < 𝜌 <
100. So after transformation, the training dataset for interval prediction using ELM should be 

{(𝑋𝑖, �̂�𝑖
−, �̂�𝑖

+)}𝑖=1
𝑁 . Then by adjusting the number of output neurons, the ELM can directly 

generate the lower and upper bounds under a certain PINC level. A structure of an ELM model 

for interval prediction is shown in Figure 9. 

 

……
 

……
 

Input 𝑋𝑖,  

𝑖 = 1, … , 𝑁 

Input Layer  

(n neurons) 

Hidden Layer  

(K neurons) 

Output Layer  

(m = 2 neurons) 

1 

n 

1 

2 

K-1 

K 

1 

2 

𝑈𝑖
𝛼 

𝐿𝑖
𝛼 

Figure 9. A structure of ELM model for interval prediction. 

 

Multi-objective function and Particle Swarm Optimization: In this study, the Particle Swarm 

Optimization (PSO) algorithm was used to further adjust the parameters of ELM, by minimizing 

a multi-objective optimization function which considers both reliability and sharpness of PIs. 

Specifically, a multi-objective optimization function was constructed to achieve the trade-off 

between those two important criteria. Recall that in ELM, the weights 𝛽 at the links connecting 

the hidden layer and output layer are the only parameters which need to be learned, and which 

can be calculated as in Equation 15 above. However, the weights 𝛽 can be further tuned through 

PSO, in order to minimize the following multi-objective function 𝐹. 

   𝐹𝛽  
𝑚𝑖𝑛 = 𝛾𝑅𝛼 + 𝜆𝑆𝛼         

Equation 16 

where, 

𝑅𝛼 denotes the reliability as calculated by Equation 4 

𝑆𝛼 denotes sharpness as calculated by Equation 7. 

𝛾 and 𝜆 are trade-off weights for the reliability and sharpness metrics defined by the user. 

 

Some researchers have pointed out that reliability is the primary feature reflecting the correctness 

of the PIs, and hence should be given priority (Wan et al., 2014). 

 

PSO is a population based heuristic optimization inspired by the social behavior of bird flocking 

or fish schooling (Kennedy, 2011). It is an extremely simple but efficient algorithm with fast 

convergence speed for optimizing a wide range of functions. In this study, it is applied to further 
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adjust the weights 𝛽 of ELM model in order to minimize the multi-object function in Equation 

16. A brief introduction of PSO is given next. 

Suppose the total population of particles in the 𝑆-dimensional search space is 𝑁𝑃, the position of 

the 𝑖𝑡ℎ particle can be represented with a vector 𝑃𝑖 = [𝑃𝑖1, 𝑃𝑖2, … , 𝑃𝑖𝑆]𝑇. Once the algorithm starts 

learning, each particle moves around in the space with a speed 𝑣𝑖. The algorithm keeps running 

until the user defined number of iterations 𝑁𝑖𝑡𝑒𝑟 or a sufficiently good fitness has been reached 

(e.g., change of object values from two continuous runs is less than a user-defined threshold). 

For each iteration, the velocity and position of each particle are updated as following equations: 

 

 𝑣𝑖 = 𝑤𝑣𝑖 + 𝑐1𝑟1(𝑃𝑖
𝑏 − 𝑃𝑖) + 𝑐2𝑟2(𝑃𝑔

𝑏 − 𝑃𝑖) 

Equation 17 

 𝑃𝑖 = 𝑃𝑖 + 𝜙𝑣𝑖            
Equation 18 

 

for 𝑖 = 1,2, … , 𝑁𝑃. 

where, 

𝑤 is the inertia weight; 

𝑐1, 𝑐2, 𝜙 are user-defined constants; 

𝑟1 and 𝑟2 are random numbers within [0, 1]; 
𝑃𝑖

𝑏 is the best position for the particle 𝑖 that generated the smallest objective function 

value from the previous iterations; 

𝑃𝑔
𝑏 is the best position among particles in the global swarm that produced the smallest 

objective function value from the previous iterations. 

 

Note that the velocity of the 𝑖𝑡ℎ particle for the next iteration is a function of three components: 

the current velocity, the distance between its own previous best position 𝑃𝑖
𝑏 and the current 

position, and the distance between the global best position 𝑃𝑔
𝑏 and its current position. The 

initialized positions of the particles are generated randomly, based on the weights 𝛽∗ using 

Equation 15 , and the speed of the particles are randomly produced with an interval 

[−𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥], 𝑣𝑚𝑎𝑥 is a 𝑆-dimensional vector. For each iteration, the updated position of each 

particle will be taken as the adjusted weights 𝛽. The corresponding value from Equation 16 will 

be used to decide the 𝑃𝑖
𝑏 and 𝑃𝑔

𝑏. After the algorithm stops, the 𝑃𝑔
𝑏 will be the finalized weights 𝛽 

for ELM model. The flow chart in The flow chart of PSO-ELM algorithm for interval prediction. 

Figure 10 shows the complete learning process of the hybrid PSO-ELM algorithm for interval 

prediction. 
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Figure 10. The flow chart of PSO-ELM algorithm for interval prediction. 

 

As shown in Figure 10, given a dataset {(𝑋𝑖, �̂�𝑖
−, �̂�𝑖

+)}𝑖=1
𝑁 , ELM algorithm can be applied first to 

get an optimal 𝛽∗ using Equation (15). After generating the initial positions of particles on the 
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Iteration = Iteration + 1 

Iteration = 0 
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basis of 𝛽∗, PSO algorithm aims to find the global best position 𝑃𝑔
𝑏 that can minimize the multi-

objective function in Equation 16. PSO algorithm continues until the maximum number of 

iterations is reached or until the change in the value of the multi-objective function from one 

iteration to the next is less than a predefined threshold. The final global best position 𝑃𝑔
𝑏 is then 

taken as the values of 𝛽 to be used by ELM to make interval predictions.  

 

Improved PSO-ELM 

In this study, we improved the original PSO-ELM by making the following two refinements for 

short-term traffic volume prediction task. First, instead of learning the PSO-ELM model 

parameters based on the training dataset and then keeping them unchanged, the PSO-ELM model 

can be regularly updated in an on-line approach. Every period of time 𝑙, we use the newly 

archived traffic volume data to adjust the model parameters. For example, when the hourly 

traffic volumes of the next day are available, they are imported to represent a new training 

dataset, and the PSO-ELM model is retrained.   

 

The second improvement is related to the PI evaluation criteria. As pointed out by Zhang et al. 

(2014), the lack of definite agreement on the indices of PI assessment creates a relatively new 

research challenge in traffic forecasting. Zhang et al. (2014) applied the PICP and the mean PI 

length (MPIL) which is the average distance between the upper bounds and lower bounds of the 

intervals to evaluate the PIs. Guo et al. (2014) proposed kickoff percentage and width to flow 

ratio. The kickoff percentage is the ratio of traffic flow observations lying outside of PIs, and the 

width to flow ratio is the average of width to flow ratios for all the PIs.  

 

In the original PSO-ELM model, the reliability Equation 4 and the multi-objective optimization 

Equation 16 encourage the PICP to be as close as possible to PINC. However, it will be much 

better if the PSO-ELM model can generate a PICP higher than PINC, and at the same time it can 

also keep the PIs as narrow as possible. Therefore, we change the way of quantifying the 

reliability of interval prediction by simply revising Equation 4 as follows and apply it to 

Equation 16.  

 

 𝑅𝛼 = 𝑃𝐼𝑁𝐶 − 𝑃𝐼𝐶𝑃         

Equation 19 

Therefore to minimize the objective value in  Equation 16, the PSO will find a set of parameters 

for ELM to make PICP as high as possible and also to keep the PIs narrow.  

 

Benchmark models 

 

To assess the performance of the PSO-ELM model and the improvement we made, the PSO-

ELM models are compared against the hybrid model by Zhang et al. (2014). This section will 

briefly introduce the hybrid model by Zhang et al. (2014).  For further details, the reader is 

referred to Lin et al., 2018.  

 

Hybrid Model by Zhang et al. (2014): Zhang et al. (2014) decomposed the traffic data into three 

components: a periodic trend, a deterministic component and a volatility component. In the 

hybrid model they proposed, spectral analysis and ARMA model were applied to capture the first 
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two components. What makes their model unique, however, is the volatility component where 

they assume that the white noise 𝑒𝑡 is conditionally heteroscedastic instead of constant,  

 

𝑒𝑡 = 𝑧𝑡√ℎ𝑡 

Equation 20 

where,  

{𝑧𝑡} is a sequence of i.i.d. random variables with zero mean and unit variance.  The conditional 

distribution of 𝑒𝑡 is also assumed to be i.i.d. with zero mean and a variance of ℎ𝑡. 

 

In the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, ℎ𝑡 is 

calculated as follows: 

 

ℎ𝑡 = 𝑎0 + ∑ 𝛽𝑖ℎ𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝛼𝑗𝑒𝑡−𝑗

2𝑞
𝑗=1                                                                                     

Equation 21 

which shows that the conditional variance is a linear combination of the lagged condition 

variance and past model sample variances.  

 

Zhang et al. (2014) pointed out that GARCH model can capture the phenomenon observed in 

traffic datasets in which a large past value of sample variance tends to be followed by another 

large sample variance. However, it ignores the asymmetric effect in transportation system that 

travelers may response differently to sudden decrease or increase in travel time. To address this, 

the researchers applied the Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model to 

capture the asymmetric volatility effect: 

 

ℎ𝑡 = 𝑎0 + ∑ 𝛽𝑖ℎ𝑡−𝑖
𝑝
𝑖=1 + ∑ (𝛼𝑗𝑒𝑡−𝑗

2 + 𝛾𝑗𝑒𝑡−𝑗
2 𝐼𝑡−𝑗)𝑞

𝑗=1    

Equation 22 

where,  

𝐼𝑡−𝑗 = {
1  𝑖𝑓 𝑒𝑡−𝑗 < 0

0  𝑖𝑓 𝑒𝑡−𝑗 ≥ 0
                                                                                                              

Equation 23 

MODELING DATASET  

For this study, we considered a part of the hourly passenger car traffic volume dataset collected 

at the Peace Bridge, focusing on traffic entering the US from Canada. The size of the dataset is 

900 observations, collected between 7:00 to 21:00 from January 1st to March 1st in 2014. The 

first 600 data points (01/01/2014-02/09/2014) are used to train the models (i.e., the training 

dataset), while the rest (02/10/2014-03/01/2014) are used to test the models.  

 

Note that in this part of the study, our objective is to test and compare the interval prediction 

performances for different models, therefore a smaller dataset is much easier for use to explore 

the reasons behind why some of the predicted points were outside of PIs. For example, because 

the time period of the dataset falls within the inclement winter season in the area of the study, we 

could check the historical snow precipitation records for the points outside of PIs. Furthermore, 

the season of popular sports events (e.g., the Buffalo Sabres games) is from Oct 2013 to April 
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2014, which also falls within the time period considered for this period, allows us to explore 

other possible reasons for predictions lying outside PIs.  

 

 

MODEL DEVELOPMENT AND RESULTS 

Model development 

First, the original, off-line PSO-ELM model was implemented in Matlab. There are quite a few 

hyper-parameters to tune in a PSO-ELM model. These include: (a) the multi-objective function 

parameters; (b) the ELM parameters; and (c) the PSO parameters. For the multi-objective 

function related parameters, target values in the training dataset were slightly increased and 

decreased by 5% in order to construct the target bounds {(�̂�𝑖
−, �̂�𝑖

+)}𝑖=1
𝑁  (based on our 

experiments, this value doesn’t have too much impact on the results).   

 

As mentioned earlier, for the weights 𝑤1 and 𝑤2 in the sharpness calculation in Equation 6, the 

optimal values need to be tuned carefully for different PINC levels.  When the PINC was set to 

90%, the weights 𝑤1 and 𝑤2 were set to 6 and 0.1, respectively.  When he PINC was 95%, 11 

and 0.1 were used, and when PINC was 99%, 12 and 0.1 were chosen. In general, we found that 

larger values of 𝑤1 generated a narrower interval, and larger 𝑤2 made the intervals wider. 

Because 𝛼 in Equation 6 decreased from 0.10 to 0.01 when PINC changed from 90% to 99%, we 

needed to increase 𝑤1 in order to keep the predicted interval tight. Finally, for the multi-objective 

function Equation 16, the weights of reliability and sharpness 𝛾 and 𝜆 were both set to 1 for all 

three PINC levels.  This means that in our study, both criteria are regarded as equally important. 

  

For the ELM part, recall that the weights 𝑎𝑗 and biases 𝑏𝑗 for the 𝐾 hidden neurons are randomly 

chosen, and are not tuned during the training process; instead, the weights 𝛽∗ at the links 

connecting the hidden layer and output layer are calculated using Equation 15. The values of the 

only two parameters that could be calibrated or tuned, namely the number of neurons of the input 

layer and hidden layer, were determined through a grid search of possible combinations. Sets 

{12, 14, 16, 18} and {14, 16, 18, 20} were separately tried for the input and hidden layers, 

resulting in a total of 16 possible combinations. For each combination, the ELM model was run 

1000 times based on the training dataset {(𝑋𝑖, �̂�𝑖
−, �̂�𝑖

+)}𝑖=1
𝑁 . When the lowest multi-objective 

function value was found, the randomly generated weights 𝑎𝑗 and biases 𝑏𝑗, and the calculated 

𝛽∗ were recorded. The weights 𝑎𝑗 and biases 𝑏𝑗, would then fixed during the following PSO 

experiments, whereas the weights 𝛽∗ would be used to generate the initial positions of particles 

in PSO algorithm. The experimental results of ELMs for three PINC levels (90%, 95% and 99%) 

are shown in Table 2. 

 

As shown in Table 2, the values of the lowest multi-objective function do not appear to be very 

sensitive to varying the numbers of the input and hidden neurons. Nevertheless, as can be seen 

from the table, the optimal ELM architecture consisted of 14 neurons for the input layer, 20 

neurons for the hidden layer.   
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Table 2. Experimental Results of ELMs for Three PINC Levels (90%, 95% and 99%) 

(Input Neuron 

Number, Hidden 

Neuron Number) 

Lowest Multi-objective Function Value 

PINC (90%) PINC (95%) PINC (99%) 

(12, 14) 0.74 0.87 0.82 

(12, 16) 0.75 0.89 0.66 

(12, 18) 0.78 0.84 0.80 

(12, 20) 0.73 0.88 0.75 

(14, 14) 0.78 0.86 0.76 

(14, 16) 0.79 0.82 0.73 

(14, 18) 0.77 0.81 0.66 

(14, 20) 0.73 0.79 0.66 

(16, 14) 0.75 0.85 0.71 

(16, 16) 0.79 0.86 0.68 

(16, 18) 0.75 0.85 0.67 

(16, 20) 0.78 0.87 0.72 

(18, 14) 0.84 0.87 0.73 

(18, 16) 0.81 0.83 0.75 

(18, 18) 0.82 0.85 0.73 

(18, 20) 0.85 0.82 0.74 

 

For the PSO part, the population number 𝑁𝑃 was set to 50, the iteration times 𝑁𝑖𝑡𝑒𝑟 to 150, and 

𝑤, 𝑐1 and 𝑐2 in Equation 17 were set to 0.9, 1 and 1, respectively. The optimal value for 𝜙 in 

Equation 18 was 0.5, and the maximum particle speed 𝑣𝑚𝑎𝑥 was 2.  Figure 11 shows the values 

of the objective function, and the reliability and sharpness metrics as a function of the number of 

iterations during the training of PSO-ELM model, with PINC equal to 95%. As can be seen, the 

three curves converged quite early at the 60th iteration. 

 

The objective function value decreased from 0.79 to 0.21the absolute average coverage error 

(AACE), the measure of reliability dropped from 0.506 to 0.037 with a clear declining trend 

(recall lower values of AACE indicated higher reliability or accuracy), and the sharpness curve 

fluctuated up and down but stabilized at around 0.17 level finally. The changes of the curves 

show that PSO can improve ELM to minimize the multi-objective function value. 
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Figure 11. Optimization curves in PSO-ELM algorithm with 95% PINC (a. change of 

object value; b. change of reliability; c. change of sharpness). 

 

For the improved PSO-ELM models under different PINC levels, as mentioned earlier, we 

replaced the calculation of reliability with Equation 19, and updated the parameters of the 

models every 15 points in this study. With 300 observations in testing dataset, each model was 

updated 20 times. The tuning of each model shared a similar process to that of the off-line PSO-

ELM model.  

 

For the hybrid model of Zhang et al. (2014), spectral analysis was conducted using R package’s 

TSA, the periodogram reached local maximum at time index 3, 4, 6, 40, 80 and 120. Equation 24 

lists the estimated parameters for the cyclic regression model.  

 

𝑦𝑡 = 255.42 + 14.01 𝑠𝑖𝑛 (2 ∗ 𝑝𝑖 ∗ 3 ∗
𝑡

600
) + 22.20𝑐𝑜𝑛 (2 ∗ 𝑝𝑖 ∗ 3 ∗

𝑡

600
) + 18.59𝑠𝑖𝑛 (2 ∗ 𝑝𝑖 ∗

4 ∗
𝑡

600
) + 27.01𝑐𝑜𝑛 (2 ∗ 𝑝𝑖 ∗ 4 ∗

𝑡

600
) − 19.69𝑠𝑖𝑛 (2 ∗ 𝑝𝑖 ∗ 6 ∗

𝑡

600
) − 61.48𝑐𝑜𝑛 (2 ∗ 𝑝𝑖 ∗ 6 ∗

𝑡

600
) + 56.36 𝑠𝑖𝑛 (2 ∗ 𝑝𝑖 ∗ 40 ∗

𝑡

600
) − 49.80𝑐𝑜𝑛 (2 ∗ 𝑝𝑖 ∗ 40 ∗

𝑡

600
) + 43.31 𝑠𝑖𝑛 (2 ∗ 𝑝𝑖 ∗ 80 ∗
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𝑡

600
) − 16.53𝑐𝑜𝑛 (2 ∗ 𝑝𝑖 ∗ 80 ∗

𝑡

600
) + 18.92 𝑠𝑖𝑛 (2 ∗ 𝑝𝑖 ∗ 120 ∗

𝑡

600
) + 20.93𝑐𝑜𝑛(2 ∗ 𝑝𝑖 ∗

120 ∗
𝑡

600
)                                                                                                                                      

Equation 24 

 

Figure 12 shows the original border crossing traffic flow, the estimated trend using Equation 

(48), and the residual part. 

 

Figure 12. Decomposition of border crossing traffic flow. 

 

Model results 

In this sub-section, we compare the performance of the improved PSO-ELM, the original PSO-

ELM, and the hybrid model by Zhang et al. (2014), for the three PINC levels 90%, 95% and 

99%, . To compare the PIs of these models, for each model, we calculated the PICP metric 

introduced previously, which calculates the ratio of the 300 observations in the testing dataset 

falling within the PIs, and the MPIL metric which measures the average distance between the 

upper bounds and lower bounds of the intervals as described earlier (Zhang et al., 2014). We also 

calculated the reliability 𝑅𝛼 and the sharpness 𝑆𝛼  criteria, however, we found that the PICP and 

MPIL metrics can help us evaluate the models in a more straightforward way.  

 

A number of observations could be made regarding the results of the comparison.  First, because 

the original PSO-ELM model aims to minimize the multi-objective function by making PICP as 

close as PINC, model’s PICPs were found to be exactly equal to the specified PINCs for all the 

levels (i.e., the PICP for an PINC level of 90% was found to be exactly equal to 90%). Also 

because the original PSO-ELM models were not updated when the new data arrives, the MPILs 

of the PSO-ELM models were found to be higher than those for the improved PSO-ELM and for 

those of the Zhang et al. model, indicating a worse performance.  Moreover, the improved PSO-
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ELM model provided higher PICP than the specified PINC level (for example, the PICP of the 

improved PSO-ELM model was 94% when the specified PINC was 90%). If we specifically 

focus on the performance of the improved PSO-ELM model developed in this study, one can see 

that the improved PSO-ELM had the smallest MPIL among all three models for the three 

specified PINC levels, and its PICP was higher indicating superior performance. 

 

 
 

Figure 13. PIs of PSO-ELM by PINC levels (a. PINC = 90%; b. PINC = 95%; c. PINC = 

99%). 

 

Figure 13 shows the 300 real observations from the testing dataset and the prediction intervals of 

the original PSO-ELMs under the three PINC levels. The real observations are marked as red 



 

31 

 

when they fell outside of PIs, green when they fell within top half of PIs, and yellow within the 

bottom half of PIs. As can be seen, first, moving from the top figure of Figure 13, to say the ones 

below it, when the PINC level increases from 90% to 99%, the prediction intervals become 

correspondingly wider and thus naturally fewer observations fall outside the prediction intervals; 

specifically, there were 29, 15 and 2 points (marked in red) that fell outside PIs the PINC levels 

of 90%, 95% and 99%, respectively. For example, the point marked with the black circle fell 

outside of the prediction interval under 90% PINC, but within the PIs under the 95% and 99% 

levels. Similarly, the point marked with the orange circle only fell within the prediction interval 

when the PINC was 99%.  

 

 
Figure 14. PIs of Improved PSO-ELM by PINC levels (a. PINC = 90%; b. PINC = 95%; c. 

PINC = 99%). 
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In the same way, the PIs of improved PSO-ELM models by PINC levels and the 300 data points 

are shown in Figure 14. If we compare the PIs with those under the same PINC level in Figure 

13, we can notice immediately that they are much narrower. Meanwhile there are fewer points 

outside of PIs under the same PINC. The same point circled with black is already within the 

interval when it is 90% PINC, and the orange-marked point is covered by the interval when it is 

95% PINC. Figure 13 and Figure 14 thus demonstrate the superior performance of the improved 

PSO-ELM model proposed herein.  

 

MODEL APPLICATION FOR OPTIMAL STAFFING LEVEL PLAN DEVELOPMENT 
In this section, we propose a comprehensive optimization framework to make staffing level plan 

recommendations for border crossing authorities, based on future traffic volume predictions from 

the different models described above (this includes the use of both PI bounds and point 

predictions from the Zhang et al. model). We then compare these different staffing levels plans 

in terms of average waiting times and total system cost.   

 

Optimal staffing plan development framework 

In our previous research, we proposed a generic queueing model with a Batch Markovian Arrival 

Process (BMAP) and Phase Types (PH) services for border crossing delay calculation (Lin et al., 

2014b). The transient solution of the BMAP/PH/n queueing model was obtained using heuristic 

methods. We then compared the queueing models’ estimates to the results from a detailed 

microscopic traffic simulation model of the Peace Bridge border crossing, and showed that the 

transient multi-server queueing model, along with the heuristic algorithm, is capable of 

estimating the border crossing waiting time accurately and efficiently.  

 

In that study, we also incorporated the queueing model within an optimization framework to help 

inform border crossing management strategies. The optimization model is shown below. 

 

𝐶𝑖𝐵𝑖

𝑚𝑖𝑛 = 𝐶𝑜𝑝𝑒 ∗ 𝐵𝑖 + 𝐶𝑤 ∗ 𝑉𝑖 + 𝐶𝑝𝑢𝑛         

Equation 25 

 

s.t.  

 
𝑉𝑖∗μ

𝐵𝑖
≤ 𝑇ℎ𝑤, 

 𝐵𝑚𝑖𝑛 ≤ 𝐵𝑖 ≤ 𝐵𝑚𝑎𝑥, 

where, 

𝐶𝑖 is the total cost of the queueing system during hour i; 

𝐶𝑜𝑝𝑒 is the cost per hour to operate one booth; 

𝐶𝑤 is the hourly cost of waiting time per vehicle; 

𝐵𝑖 is the number of open booths during hour 𝑖; 
𝑉𝑖 is the average number of waiting vehicles during hour i, which can be calculated based 

on the transient BMAP/PH/n queueing model; 

μ is the average service time (seconds); 

𝐶𝑝𝑢𝑛 is the penalty cost for changing the number of open booths from one hour to the 

next, calculated as follows  𝐶𝑝𝑢𝑛 = 𝑐 ∗ |𝐵𝑖 − 𝐵𝑖−1|, where 𝑐 is the penalty for switching 

for one booth; 
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𝑉𝑖∗μ

𝐵𝑖
≤ 𝑇ℎ𝑤 is the constraint that ensures that the average waiting time is less than a 

threshold value, 𝑇ℎ𝑤; 

𝐵𝑚𝑖𝑛 ≤ 𝐵𝑖 ≤ 𝐵𝑚𝑎𝑥 is the constraint for the number of available booths. 

 

The goal of the optimization is to minimize the total system cost of the queueing system for a 

given hour 𝑖, including the cost for both the travelers as well as the operating agency. While 

doing that, the problem strives to keep the expected waiting time below a certain threshold.  The 

total cost consists of three elements.  The first element is the operating cost of opening the 

inspection stations, calculated by multiplying the assumed hourly cost of operating one booth by 

the number of booths or inspection stations open during hour 𝑖.  The second element is the cost 

of the wait time travelers spent waiting in the queue at the border, calculated by multiplying the 

assumed monetary value for one hour of waiting time by the average number of vehicles in the 

queue during hour i.  The third element is a penalty term designed to capture the cost of 

switching between an open and a closed inspection lane (or vice versa).  Two constraints are 

included: the first constraint is added to keep the average delay per vehicle below a certain 

threshold while a second constraint is included to make sure the number of inspection lanes open 

does not exceed the physical number of lanes available at the border crossing. If the first 

constraint cannot be satisfied with all the available booths open, we will set 𝐵𝑖 as the one that can 

minimize the total cost 𝐶𝑖.  

 

Our previous study didn’t try to make the optimal staffing plans based on the future traffic 

predictions. With the BMAP/PH/n queueing model and the optimization function, we are capable 

of developing optimal staffing plans for border crossing authority based on a series of different 

types of short-term traffic predictions, such as the PI upper or lower bounds or point predictions. 

We can then evaluate different optimal staffing plans in terms of waiting times and total system 

cost. The optimal staffing plan development framework is as follows: 

 

Step 1: At the beginning of hour i, check how many vehicles are waiting in the queue 𝑉𝑖−1 and 

record the number of open booths 𝐵𝑖−1. These are necessary inputs to the queueing model and 

the optimization model. Based on the next hour traffic prediction (PI upper or lower bound or 

point prediction), calculate the optimal number of open booths 𝐵𝑖 as the staffing plan for hour i 

using the Equation 25 

 

Step 2: With the optimal number of open lanes determined, use the real traffic demand for the 

hour i as the input of the BMAP/PH/n queueing model (Lin et al., 2014b), run the multi-server 

queueing model. This is to simulate the real world scenario if the border crossing authority 

followed the optimal staffing plan based on the short-term traffic prediction. 

 

Step 3: At the end of hour i, record the system cost 𝐶𝑖 and average waiting times 
𝑉𝑖∗μ

𝐵𝑖
 based on 

the queueing model. Record the number of waiting vehicles in the queue 𝑉𝑖 and the number of 

open booths 𝐵𝑖. 

 

Step 4: keep running Step 1 to Step 3 until the scheduled operational period ends.  
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In this study, the parameters in are set as follows. For the hourly operating cost of one booth 

(Cope), a value of $150 was assumed.  For the monetary value of one hour of wait time (Cw), it 

was estimated to be around $25. The penalty for switching one booth (𝑐) from closed to open (or 

vice versa) was set as $20. Given that the maximum number of inspection stations that can be 

opened at the Peace Bridge is 10, which meant that 𝐵𝑚𝑖𝑛 = 1 and 𝐵𝑚𝑎𝑥 = 10. Average service 

time μ was set as 44.58 seconds (based on real-world observations from our previous research). 

The accepted delay threshold (𝑇ℎ𝑤) was considered as 10 minutes. More details can be found in 

the reference (Lin et al., 2014b).  

 

Optimal staffing plan comparison 

The optimal plan development framework allows us to calculate and compare hourly average 

waiting times and total system costs for the operational period for various types of predictions 

such as the upper bounds or lower bounds of PIs (in this part, we focus on the PIs from improved 

PSO-ELM and from Zhang et al. (2014) model. The experiments also tested the point predictions 

from Zhang et al. (2014) to verify if PIs could result in better staffing plans.  

 

For the operational periods, we picked two representative morning periods to compare the 

performances of different predictions. One is 7:00-12:00 on 02/10/2014, a normal Monday, and 

the other one is 7:00-12:00 on 02/17/2014, President’s Day. In the Tables to follow, we 

differentiate the predictions of diverse models by integrating the model name and the PINC 

level, with “U” for upper bound or “L” for lower bound. For example, “Im_PSO-ELM_90L” 

means the predictions are from the lower bounds of the improved PSO-ELM under 90% PINC 

level. For the point predictions from the model of Zhang et al. (2014), they were simply named 

as “Zhang_Point”.  

 

Note that as the warming-up stage of the queuing model and the staffing plan development 

process, the results for the first hour (i.e., 7:00-8:00) are not included in the analysis. Fig. 9. 

shows the average waiting times for 8:00-12:00 based on six sets of upper or lower bound 

predictions when PINC level is 90% and two types of point predictions. The shaded area formed 

by the corresponding upper and lower bounds is the average waiting times interval.  

 

The following table, Table 3, further summarizes the total system costs for various sets of 

staffing level plans from the different predictions from 8:00 to 12:00 on Monday, 02/10/2014. 

First for the normal weekday morning hours, the staffing plans developed utilizing point 

predictions, perform better than the PI bound plans with the total system costs around $3,000. 

Second, although implementing the staffing plans from upper bounds can keep the average 

waiting times all zero, the total system costs are a little higher than the plans from the point 

predictions because of the low real traffic demand and the extra operation costs from opening 

more booths. Third, considering that the PI lower bound is usually smaller than the real traffic 

demand, therefore it is much easier to satisfy the PI lower bound staffing plan.  If the operation 

authority is short-staffed to implement the plans from PI upper bounds or point predictions which 

may require more open booths, only the plans based on the PI lower bounds from improved 

PSO-ELMs can still keep a reasonable level of service (less than 10 minutes from 9:00 to 12:00 

in Fig. 9.), and the total system costs are only $1,000 more comparing with the point prediction 

plans due to more waiting travelers. 
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Table 3. Total System Cost from 8:00 to 12:00 on Monday (02/10/2014) 

 

Lower Bound 

Predictions 

Cost 

($) 

Upper Bound 

Predictions 

Cost 

($) 

Point 

Predictions 

Cost 

($) 

Im_PSO-ELM_90L 4,092 Im_PSO-ELM_90U 3,510  

  Im_PSO-ELM_95L 4,092 Im_PSO-ELM_95U 3,770 

Im_PSO-ELM_99L 5,292 Im_PSO-ELM_99U 4,370 

Zhang_90L 7,275 Zhang_90U 3,170  

Zhang_Point 

 

3,001 Zhang_95L 12,758 Zhang_95U 3,320 

Zhang_99L 14,384 Zhang_99U 3,620 

 

In contrast, Table 4 shows the total system costs for different plans from 8:00 to 12:00 on 

President’s Day in 2014. We notice that the total system costs become much higher for plans 

based on point predictions, about $12,000 comparing with the previous $3,000 in Table 3. 

Again, this is mainly the result of the underestimation of high traffic demand on this holiday and 

the huge waiting time costs from the travelers. The poor performances of the plans from lower 

bounds are because of the same reason. However, note that the plans using predictions from 

“Im_PSO-ELM_90L” generate a cost of $13,437, which is very close to the costs from the point 

predictions with only $1,000 more in additional expense. Again this shows the plans from PI 

lower bounds of the improved PSO-ELM could be quite useful when the management authority 

lacks staff.  

 

More importantly, Table 4 shows that in this case, to keep the border crossing traffic from 

Canada to US moving smoothly, we’d better implement the staffing plans based on the PI upper 

bounds. Although the operation costs are higher, travelers spend much less time waiting at the 

border (Fig. 10). Therefore, the total system cost can be controlled down to as low as around 

$5,500. When using upper bounds, and no matter which PINC level is chosen, the total system 

costs based on the upper bounds of improved PSO-ELMs are always less than $6,000. Note that 

our analysis did not consider indirect benefits of reduced delays (e.g., tourists can spend more 

time on shopping, food and entertainment and so on in US during holidays) nor environmental 

benefits resulting from reductions of idle engines waiting at the border.   

 

Table 4. Total System Cost from 8:00 to 12:00 on President’s Day (02/17/2014) 

Lower Bound 

Predictions 

Cost 

($) 

Upper Bound 

Predictions 

Cost 

($) 

Point 

Predictions 

Cost 

($) 

Im_PSO-ELM_90L 13,437 Im_PSO-ELM_90U 5,458  

Im_PSO-ELM_95L 21,460 Im_PSO-ELM_95U 5,933 

Im_PSO-ELM_99L 25,988 Im_PSO-ELM_99U 5,783 

Zhang_90L 29,611 Zhang_90U 6,308  

Zhang_Point 

 

12,215 Zhang_95L 35,541 Zhang_95U 6,308 

Zhang_99L 39,925 Zhang_99U 5,573 

 

In addition to picking the two specific time periods for detailed analysis (i.e., a normal 

Monday and President’s Day), the study also calculated the average waiting times and 

average costs for the entire testing data set consisting of 300 hours. The overall 
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performances of the staffing plans, developed based upon the different models investigated 

in this study, are summarized in  

Table 5 and Table 6. The observations from the average waiting times shown in  

Table 5 show that: (1) the staffing plans derived from using PI upper bounds result in almost 

zero waiting times; (2) for the staffing level plans developed based upon the PI lower bounds, the 

one from “Im_PSO-ELM_90L” performs the best. This may be attributed to the fact that most 

days in the testing dataset are normal days. For Table 6, the average costs of plans derived from 

PI upper bounds, are lower than the other types of plans.  For the lower bound plans, the plan 

from “Im_PSO-ELM_90L” perform the best with average cost $1,570. Once again, the results 

show that when a border crossing authority is short of staff, plans derived from using the 

improved PSO-ELM lower bounds can result in lower average waiting times and costs.  

 

Table 5. Average Waiting Times (mins) for 300 Hours in Testing Dataset  

Lower Bound 

Predictions 

mins Upper Bound 

Predictions 

mins Point 

Predictions 

mins 

Im_PSO-ELM_90L 11.87 Im_PSO-ELM_90U 1.02  

Im_PSO-ELM_95L 12.52 Im_PSO-ELM_95U 0.63 

Im_PSO-ELM_99L 15.82 Im_PSO-ELM_99U 0.32 

Zhang_90L 14.77 Zhang_90U 0.74  

Zhang_Point 

 

3.95 Zhang_95L 16.90 Zhang_95U 0.63 

Zhang_99L 22.13 Zhang_99U 0.37 

 

Table 6. Average Costs ($) for 300 Hours in Testing Dataset 

Lower Bound 

Predictions 

Ave-

cost ($) 

Upper Bound 

Predictions 

Ave-

cost ($) 

Point 

Predictions 

Ave-cost 

($) 

Im_PSO-

ELM_90L 

1,570 Im_PSO-ELM_90U 795  

Im_PSO-

ELM_95L 

1,610 Im_PSO-ELM_95U 803 

Im_PSO-

ELM_99L 

2,030 Im_PSO-ELM_99U 846 

Zhang_90L 1,850 Zhang_90U 764  

Zhang_Point 

 

871 Zhang_95L 2,110 Zhang_95U 774 

Zhang_99L 2,980 Zhang_99U 807 

 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

This part of the study introduced and applied a hybrid machine learning model called PSO-ELM 

for interval prediction of short-term traffic volume. The study refined the original PSO-ELM 

model, to allow it to run in an on-line fashion, and redefined the reliability criterion. The paper 

compared the performances of the PSO-ELM models against two other models, the original 

PSO-ELM model and the Zhang et al. (2014) model.   The models were developed utilizing an 

hourly traffic data set for traffic crossing the Peace Bridge International Border. The comparison 

results show that the PICP for the original PSO-ELM was always very close to the specified 

PINC, whereas the PICPs for the other  models were higher than the corresponding specified 

levels of 90%, 95%, or 99%. Specifically, the PICP of the model by Zhang et al. (2014) was 
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equal to 100% for all cases, and that for the improved PSO-ELM had a PICP higher than or 

equal to the model. For MPIL, the improved PSO-ELM yielded the smallest value for all 

specified PINC it is the smallest for the improved PSO-ELM for any PINC level, followed by 

Zhang et al. (2014); the original PSO-ELM had a relatively high MPIL. Therefore, in general, 

only the PIs from the improved PSO-ELM models were found to be reliable and sharp. 

Furthermore, the quantitative multi-objective function allows the improved PSO-ELM models to 

adjust the weights of reliability and sharpness, while the statistical models don’t provide such a 

mechanism. 

 

The study then constructed a comprehensive staffing plan development framework to minimize 

total system cost for border crossing based on the upper bounds or lower bounds of the PIs, or 

point predictions. Experiments were conducted for the time period 7:00 to 12:00 on two typical 

days, one is a normal Monday, and the other one is President’s Day. We found that for the 

holiday time period, the plan from PI upper bounds of the improved PSO-ELM reduced the 

hourly average waiting times the most, to be around five minutes, which also made the total 

system cost much lower. The plans from the lower bounds or the point predictions resulted in 

huge border waiting time costs because of the underestimation of the traffic demand for the 

President’s Day holiday. On the normal Monday, the staffing level plans from point predictions 

performed well with reasonable average waiting times (around five minutes) for the travelers and 

low total system costs. In this case the plans from upper bounds produced no waiting times but 

caused a higher total system cost due to the extra operation cost with more booths.  

 

In both the holiday and normal Monday scenarios, for the lower bound plans, the ones from the 

improved PSO-ELMs performed the best, with their average waiting times being much less than 

the PI lower bound plans from the Zhang et al. (2014) model, and even turning out to be less 

than or close to the point prediction plans. The average waiting times and costs with different 

staffing plans for the whole testing dataset are also calculated and compared. Similar findings are 

observed. In general, for the case when the border crossing authority lacks the resources to hire 

enough staff to implement the plans from PI upper bounds or point predictions, the plans based 

on the PI lower bounds from the improved PSO-ELMs appear to be still capable of maintaining a 

reasonable level of service with only $1,000 more in total system cost compared with the point 

prediction plans. 

 

For future research, we provide the following suggestions: 

 

1. To enhance the accuracy of the interval prediction models, future research should consider 

including additional variables to capture the effect of inclement weather and special events 

(those could be discovered from mining social media data). As a further refinement, the on-line 

PSO-ELM can be updated more frequently, e.g. once per hour instead of every 15 hours in this 

study. Future research could also explore how to adjust the weights of reliability and sharpness in 

the multi-objective function dynamically.  For example, if the next hour is the peak-hour on a 

holiday, the reliability may be more important because we may want to use the upper bound of 

the PI to make staffing plans. On the other hand, if it is a non-peak hour, one may want to focus 

more on sharpness. 
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2. In this study, we make optimal plans purely based on either upper bounds or lower bounds of 

PIs. It may be of interest to interchangeably use upper and lower bounds. The simplest approach 

would be to use upper bounds for peak-hours, and lower bounds for non-peak hours. More 

sensitivity analysis need to be done in the future on parameters such as the waiting time cost per 

hour, the operation cost per hour, the waiting time threshold and the number of available 

staffs/open booths. The environmental pollution cost can also be considered in the future.  

 

3. Third, the whole methodology can be tested on additional application scenarios such as tolling 

stations, subway and/or airport security checking points. It would also be interesting to test the 

methodology on additional datasets with finer granularity. 

 

4. Finally, although this paper only focused on the traffic volume interval prediction at a single 

point, the PSO-ELM models described herein can easily be extended to the traffic state 

estimation problem for a whole road network with the adjustment of the number of neurons in 

the output layer.  
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DEEP-LEARNING MODELS FOR BORDER CROSSING DELAY 

PREDICTION 

In this part of the study, we leverage a unique data set that has only been recently available 

which records the border crossing delay based on data collected from Bluetooth readers recently 

installed at the Niagara Frontier border crossings.  With this unique data set, the study developed 

models that directly predict the future border crossing delay based on delay recorded in the 

previous time steps.  The models are developed using deep learning methods, which have 

attracted a lot of attention within the research community recently and which have demonstrated 

significant advantages in dealing with big data problems such as computer vision and speech 

recognition. Deep Learning methods have also been recently applied to traffic state prediction 

(Lv et al., 2015; Ma et al., 2015). 

 

DEEP LEARNING AND ITS APPLICATION IN TRANSPORTATION 

A Deep learning technique is a type of Machine learning/Artificial intelligence (AI) approach 

(Goodfellow, Bengio, & Courville, 2016), which utilizes deep artificial neural networks for 

learning (Skansi, 2018). Deep learning is a method for training models through various levels of 

abstraction (Alpaydin, 2016). Figure 15 shows the relationship between AI, machine learning 

and deep learning. 

 

 

 

 

 

 

 

 

 

 

Figure 15. Relationship between AI, Machine Learning, and Deep L earning 

(Goodfellow et al., 2016) 

 

To understand deep learning, it might be necessary to understand some concepts like Neural 

Networks (NN) and Machine Learning (ML). A neuron is a simple processing unit and the 

network of these neurons and the connections between them is called an (NN) (Alpaydin, 2016). 

ML refers to the capability of the systems to gain their own knowledge by extracting patterns 
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from the raw data (Goodfellow et al., 2016). Supervised and unsupervised learning algorithms 

are two broad categories of machine learning algorithms (Goodfellow et al., 2016). Learning 

which utilizes a dataset where both the input and output are provided are supervised learning 

algorithms, while those which have to learn the properties of the structure from the dataset 

provided to them are called unsupervised learning algorithms (Goodfellow et al., 2016). 

Generally, a ML algorithm involves some hyper-parameters like the number of hidden units, 

learning rate, dropout rate, convolutional kernel width, implicit zero padding, etc. (Goodfellow et 

al., 2016). The learning algorithm cannot adjust the hyper-parameters by itself, however, their 

settings can control the behavior of the algorithm (Goodfellow et al., 2016).  

 

Goodfellow et. al. (2016) mention that deep learning has a long history which can be traced back 

to the 1940s, and that it has mainly experienced three waves of development and was known by 

different names each time; these include the first wave from the 1940s to 1960s, the second wave 

from 1980s to 1990s and the third wave from 2006 (Goodfellow et al., 2016). Deep learning was 

known as cybernetics and connectionism during the first and second wave respectively 

(Goodfellow et al., 2016). Neuroscience is considered to be an inspiration for deep learning 

researchers, however, the modern deep learning doesn’t hold neuroscience as its predominant 

guide (Goodfellow et al., 2016). 

  

The usefulness of deep learning has increased with a greater amount of training data available 

and it has been able to solve progressively more complicated applications more accurately with 

time (Goodfellow et al., 2016). As per Khan et. al. (2018), the advantages of deep learning 

include the simplicity in generating large networks of deep learning and their easy scalability to 

huge datasets. Deep learning has been applied to various fields like robotics, natural language 

processing, search engines, online advertising, video games, and finance (Goodfellow et al., 

2016). Each deep learning technique works differently. Various processes take place during the 

prediction of the next values by these techniques. In this section, the theory and working of the 

deep learning methods utilized in this research are explained in some detail. 

 

Multilayer Perceptron (MLP) 

Multilayer Perceptron (MLP) is one of most well-known of the deep learning techniques. It is 

made of three components, namely the input layer, hidden layer, and an output layer (Pal & 

Prakash, 2017). Each layer contains several numbers of neurons or nodes (Gardner & Dorling, 

1998). As explained by Gardener and Dorling (Gardner & Dorling, 1998), MLPs consists of a 

system of neurons interconnected by weights (w). MLPs are fully connected when each neuron is 

connected to every other neuron in the previous and next layer. MLPs could have one or more 

hidden layers and their architecture is not fixed. Figure 16 shows an illustration of MLP. 

 

Training of MLPs is a process of determining the individual weights such that the relationship 

that has to be modeled is accurately resolved (Gardner & Dorling, 1998). Gradient Descent is a 

technique that is used by the backpropagation training algorithm to train the MLPs (Gardner & 

Dorling, 1998) 
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Figure 16. MLP with two hidden layers (Gardner & Dorling, 1998) 

 

Pal and Prakash (Pal & Prakash, 2017) have described in detail the training process of MLP 

models. They have explained that the input features are fed from the input layer into the hidden 

layers, where each neuron applies a linear transformation and a non-linear activation to the input 

features. They demonstrated that the output (gi) from each of these neurons is:  

 

gi = h (wix + bi) 

Equation 26 

 

where wi and bi are the weights and bias of the linear transformation respectively and h is an 

activation function. They have pointed out that MLPs can model the non-linear relationship 

between the regressors and target variable with the help of non-linear activation function (Pal & 

Prakash, 2017). As per Skansi (Skansi, 2018), the most common activation function is sigmoid 

or logistic function, which outputs σ(z) equal to 1/(1+e-z), where z (also called logit) is the sum 

of the product of inputs to the neuron with their respective weights plus bias. Bias is the 

modifiable value in each neuron (Skansi, 2018).  

 

As explained by Pal and Prakash (Pal & Prakash, 2017), the output from the neurons of one 

hidden layer are fed as an input into the next hidden layer, where again transformations of the 

inputs take place and the outputs are fed into the next layer and this procedure goes on till the 

last hidden layer feeds the output layer. The process of transformation of the input layer to 

prediction is known as the forward pass (Pal & Prakash, 2017). They have further explained that 

after the forward pass is completed, loss or error (E) is computed, which is the difference 

between predicted value and the target value. Mean squared error (MSE) or mean absolute error 

(MAE) is most suitable for training the models for time series prediction (Pal & Prakash, 2017).  

 

Next, the backpropagation algorithm is applied to compute the partial derivatives of loss with 

respect to the weights (∂E/∂w) in the backward direction, i.e. beginning from the output layer 
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and going up to the input layer, this is known as backward pass (Pal & Prakash, 2017). Finally, 

the weights of connections between each neuron, which were randomly initiated are now updated 

based on the learning rate and the results obtained from the backward pass (Pal & Prakash, 

2017). As stated by Skansi (Skansi, 2018), the weights updated by the equation: 

 

wi
new = wi

old + (-1) ŋ ∂E/∂ wi
old 

Equation 27 

where wi
new is the new updated weight, wi

old is the old weight and ŋ is the learning rate 

 

As explained by Gardener and Dorling (Gardner & Dorling, 1998), thousands of training 

iterations might be required for obtaining a MLP model with an acceptable level of error but the 

training should be stopped when the performance of the model reaches maximum on the 

independent test set. The weights are updated after each iteration (Pal & Prakash, 2017). The 

number of times the iterative weight update is repeated is called epochs (Pal & Prakash, 2017). 

Through the iterative process of the forward and backward pass, MLPs could understand the 

relationship between the dependent and independent variables and can also make predictions. 

As the direction of information processing in MLP is from the input layer to the output layer, 

they are called feed-forward neural networks (Gardner & Dorling, 1998). 

 

Convolutional Neural Network (CNN) 

Convolutional Neural Network or CNN is another deep learning method. Aghdam and Heravi 

(Aghdam & Heravi, 2017) have pointed out that applying a fully connected feedforward network 

on an image will result in a huge number of neurons, which makes them impractical for usage 

and therefore, the basic idea behind CNNs is to build a deep network with few numbers of 

parameters. The two types of convolutional layers in CNNs are 1 D convolutional layers or 

temporal convolutional layer, and 2 D convolutional layers or planar convolutional layers 

(Skansi, 2018). 2 D convolutions are generally applied to images, while 1 D convolutions are 

usually applied on sequential inputs (Pal & Prakash, 2017).  

 

Aghdam and Heravi (Aghdam & Heravi, 2017) have stated that a CNN generally comprises of 

several convolution-pooling layers that are followed by fully connected layers. Figure 18 Figure 

17 shows a diagrammatic representation of CNN. The convolutional layers usually contain 

multiple filters, which moves over the entire image, this movement is called convolution (Pal & 

Prakash, 2017). As per Khan et.al. (Khan et al., 2018), each filter is a grid of discrete numbers, 

which are also called the weight of the filter. They have further stated that the number of steps of 

the filter along the horizontal or vertical direction is called stride of the convolutional filter. They 

have demonstrated the convolutional operation that results in output feature maps due to the 

convolution between the filters and the inputs to the convolution layer. 

 

Figure 18 shows the convolution operation of a 2 X 2 filter with a 4 X 4 input feature map to 

produce a 3 X 3 output feature map (Khan et al., 2018). Pal and Prakash (Pal & Prakash, 2017) 

have explained that the summation of the product of weights of the filter and the corresponding 

pixel values of the image plus a bias (optional) is the final feature from a local patch which 

results into a value of output feature map. Aghdam and Heravi (Aghdam & Heravi, 2017) have 

explained the weight sharing property of CNNs due to which the neurons in the same filter share 

the same set of weights, which results in a decrease in the number of parameters. 
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Figure 17: A typical CNN applied to a 2 D image (Skansi, 2018) 

 

 

Figure 18. Stepwise operation of the convolutional layer with 2 X 2 filter and stride = 1 

(Khan et al., 2018) 

 



 

44 

 

Khan et. al. (Khan et al., 2018) have pointed out that the spatial size of the output feature map 

obtained after convolution may be smaller than the input feature map. To avoid that, zero 

padding may be applied, which means increasing the size of input feature map each direction by 

padding zeroes so as to output feature map with desired size.  

 

As per Khan et. al. (Khan et al., 2018), the dimensions of the output feature map ( h’ X w’) from 

convolution operation is given by 

 

h’ = {h – f – (d – 1)(f – 1) + s + 2p}/s 

Equation 28 

w’ = {w – f – (d – 1)(f – 1) + s + 2p}/s 

Equation 29 

 

where, h X w is the size of input feature map, filter in the convolutional layer has size f x f, d is 

dilation factor, s is stride and p is the increase in input feature map in each dimension due to zero 

padding.  

 

The convolutional layers and fully connected layers in a CNN are generally followed by a non-

linear activation function which enables the network to learn nonlinear mappings (Khan et al., 

2018). As stated by Pal and Prakash (Pal & Prakash, 2017), rectified linear units (ReLu) is the 

popular choice for activation function, which is given by: 

 

ReLu(z)  = 0, if z < 0 

= z, if z > 0 

Equation 30 

 

Before the output from the convolutional layers is fed to dense layers, they may be passed 

through pooling layer (Pal & Prakash, 2017). The purpose of pooling layer is down sampling, 

which means to decrease the dimensionality of the feature map (Aghdam & Heravi, 2017). The 

pooling layers conduct combination operations on the blocks of the input feature map, which is 

defined by a pooling function like max or average pooling (Khan et al., 2018). A window of a 

pre-specified size and stride is moved across input feature map and pooling operation like max 

pooling takes place in which the maximum value from the selected block of input feature map is 

chosen (Khan et al., 2018). There are no trainable weights in the pooling layer (Pal & Prakash, 

2017). As stated by Khan et. al. (Khan et al., 2018), the size (h’ X w’) of the output feature map 

from the pooling layer  is given by: 

 

h’ = |_(h – f + s)/s_| 

 

w’ = |_(w – f + s)/s_| 

Equation 31 

 

where, the size of the input feature map is h X w, size of pooling region is f X f, the stride is s, 

and |_∙_| represents floor operation. 
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As per Khan et. al. (Khan et al., 2018), fully connected layers are generally added near the end of 

the architecture in a typical CNN and their operation can be represented by: 

 

y = f (WTx + b) 

Equation 32 

 

where y is the vector of output activations and x is the vector of input activation, W is the matrix 

of weights of the connections between the layer units, b is bias and f (∙) is a nonlinear function. 

Khan et. al (Khan et al., 2018) have explained that during the training process of CNN, the 

parameters of CNN are optimized such that the loss function is minimized. These parameters are 

the tunable weights in the layers of CNN (Khan et al., 2018). They have further explained that 

gradient based methods are used for the iterative search of the locally optimal solution at each 

step and to update the parameters in the direction of steepest descent (Khan et al., 2018). As the 

information is pushed forward, CNNs are also called feedforward neural networks (Skansi, 

2018). 

 

Skansi (Skansi, 2018) has suggested that the CNNs are easier to train because they require less 

number of parameters. He also pointed out that due to the shared set of weights in CNN, the 

problem of vanishing gradient is avoided as the same weights get updated each time even if just 

slightly. Additionally, the process involved in CNNs is computationally fast and can be split 

across many processors, which is due to the fact that training of each feature map can be done in 

a parallel fashion (Skansi, 2018).  

 

Recurrent Neural Network (RNN) 

Networks that have feedback loops in which some connections feed the output back into a layer 

as input are known as Recurrent Neural Networks or RNNs (Skansi, 2018).  The diagrammatic 

representation of a simple RNN architecture is shown in Figure 19, where the circles with x, y, 

and h denotes input, output, and hidden nodes, while the squares with Wh
i, W

o
h, and Wh

h are 

matrices representing the input, output, and hidden weights respectively, and the polygon 

denotes nonlinear transformation (Bianchi et al., 2017). 

 

 

Figure 19: A simple RNN architecture (Bianchi et al., 2017) 
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The procedure of representing RNN as an infinite, acyclic and directed graph is known as 

unfolding (Bianchi et al., 2017). It comprises of replicating the hidden layer structure of the 

network for each time step (Bianchi et al., 2017). Figure 20 shows the unfolded RNN. As 

explained by Bianchi et. al. (Bianchi et al., 2017), unlike the standard feedforward neural 

networks, the weight matrices of unfolded RNNs are constrained to assume the same values in 

all replicas of the layer. They have stated that due to this transformation, a direct relation 

between network weights and the loss function can be found and hence, the network can be 

trained with a standard learning algorithm. 

 

 

 

Figure 20: RNN unfolded to feedforward neural network (Bianchi et al., 2017) 

 

As explained by Bianchi et. al. (Bianchi et al., 2017), the training procedure of RNN may be 

based on backpropagation through time (BTT) for propagation and distribution of prediction 

error to the previous states of the network. BTT is a special case of the backpropagation 

algorithm (Pal & Prakash, 2017). Usually, the training of neural networks involves using a 

gradient descent algorithm for updating its parameters so as to minimize the loss function 

(Bianchi et al., 2017).  

 

Pal and Prakash (Pal & Prakash, 2017) have described the process to calculate BTT. The loss (L) 

or error between the predicted and target variable is found through forward pass and then the 

partial derivative of loss with respect to the network weights (∂L/∂W) is computed while going 

in the backward direction, i.e. from the loss to the weight (Pal & Prakash, 2017). However, there 

can be several paths connecting the loss to the weight as RNN has a sequential structure (Pal & 

Prakash, 2017). Therefore, the partial derivative (∂L/∂W) is computed as the summation of the 

partial derivatives along each path from the loss node to every time step node and this technique 

is called BTT (Pal & Prakash, 2017). Although, the multiplicative terms used in the computation 
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of gradient may be fractional and in long-range timesteps, the product of these terms might 

reduce the gradient to zero or to a negligibly low value, which does not allow the weights to 

update (Pal & Prakash, 2017). This problem is called the vanishing gradient problem (Pal & 

Prakash, 2017). The different types of recurrent neural network architecture - Elman Recurrent 

Neural Network (ELNN), Long Short-term Memory (LSTM), and Gated Recurrent Unit (GRU), 

are described below in detail. 

 

Elman Recurrent Neural Network (ELNN): Elman Recurrent Neural Network is believed to be 

the most basic version of RNN and is also called Simple RNN or Vanilla RNN (Bianchi et al., 

2017).  Figure 19 shows the architecture of an ELNN. It comprises of input and output layers 

with feedforward connections, and hidden layers with recurrent connections (Bianchi et al., 

2017). ELNN also have h which are the input for the recurrent connection (Skansi, 2018). As 

stated by Bianchi et. al. (Bianchi et al., 2017), at time t, the update of the internal state and the 

output of the network is given by: 

 

h[t] = f (Wh
i (x[t] + bi) + Wh

h (h[t - 1] + bh) 

 

y[t] = g (Wo
h (h[t] + bo) 

Equation 33 

 

where, Wh
i, W

o
h, and Wh

h are matrices representing the input, output, and hidden weights, 

respectively; x[t] is the input, y[t] is the output of the network; h[t] is the internal state, bi, bh, and 

bo, are bias vectors and f (∙) is the activation function of the neuron. (Bianchi et al., 2017). h[t] is 

generally initialized as a vector of zeroes, and it transfers the memory contents of the network at 

time t  (Bianchi et al., 2017). Pal and Prakash (Pal & Prakash, 2017) have stated that ELNNs 

suffer due to vanishing and exploding gradients. 

 

Long Short-Term Memory Recurrent Neural Networks (LSTM RNN):  As ELNN faces difficulty 

in effectively learning the long-range dependencies because of vanishing and exploding 

gradients, LSTMs were developed to resolve this issue (Pal & Prakash, 2017). LSTMs can 

accurately model long-term and short-dependencies in the data (Bianchi et al., 2017). They do 

not impose any bias towards recent observations and allow the constant error to flow back 

through time, and by doing this, it tries to resolve the issue of vanishing gradients (Bianchi et al., 

2017). 

 

Bianchi et. al. (Bianchi et al., 2017) have explained that unlike the ERNNs, LSTMs apply a more 

elaborate internal processing unit, which is called the cell. They have further explained that a 

LSTM cell is made up of five different nonlinear components interacting in a definite manner. 

Additionally, a cell’s internal state is modified only by linear interactions, which allows smooth 

backpropagation of information across time (Bianchi et al., 2017).  Figure 21 shows a cell in 

LSTM, where, xt and yt are the external input and external output of the cell respectively; ht-1, ht, 

yt-1, and yt are internal state variables; g1 and g2 are operators with nonlinear transformation, and 

σf ,σu, and σo are sigmoid in forget, update, and output gate respectively (Bianchi et al., 2017). 
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Figure 21: Cell of a LSTM (Bianchi et al., 2017) 

 

For protecting and controlling information in the cells, LSTM uses three gates, which are forget 

gate, input gate and output gate (Bianchi et al., 2017).  The information that must be removed 

from the previous cell state h[t-1] is decided by the forget gate, how much the new state h[t] 

must be updated by new candidate h͂[t] is decided by input gate, and the part of the state to be 

outputted is decided by the output gate (Bianchi et al., 2017). 

 

For updating the cell state and computing the output, the difference equations of forward pass, as 

given by Bianchi et. al. (Bianchi et al., 2017) are:  

 

Forget gate:   σf[t] = σ (Wf x[t] + Rfy[t −1] + bf) 

Candidate state:  h͂[t] = g1(Whx[t] + Rhy[t −1] + bh) 

Input gate:   σu[t] = σ (Wux[t] + Ruy[t −1] + bu) 

Cell state:   h[t] = σu[t] (∙) h͂[t] + σf[t] (∙) h[t −1] 

Output gate:   σo[t] = σ(Wox[t] + Roy[t −1] + bo), 

Output:   y[t] = σo[t] (∙) g2(h[t]) 

Equation 34 

 

where, x[t] is the input vector to the cell at time t; σ(·) denotes a sigmoid function; g1(·) and g2(·) 

are point wise nonlinear activation function, and (∙) is the entry wise multiplication between two 

vectors; Wo, Wu, Wh, and Wf are weight matrices applied to input of the cell; Ro, Ru, Rh, and Rf 

are weights matrices of the recurrent connections; bo, bu, bf, and bh are bias vectors (Bianchi et 

al., 2017).  

 

However, as per Skansi (Skansi, 2018), the interpretations of LSTM are just metamorphic and it 

very rarely works like a human brain. Bianchi et. al (Bianchi et al., 2017), have also pointed out 
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that practically, the forget and update gate of LSTM never opens or closes totally and contents of 

the cell may change over time. 

 

Gated Recurrent Unit Recurrent Neural Network (GRU RNN): Introduced in 2014, GRUs are a 

simpler version of LSTM and can resolve the issue of long-term dependencies in ELNNs (Pal & 

Prakash, 2017). GRUs are capable of adaptably capturing the dependencies at different time 

scales (Bianchi et al., 2017). As stated by Pal and Prakash (Pal & Prakash, 2017), GRU has 

fewer trainable weights than LSTM. Figure 22 shows the architecture of a GRU cell. 

 
Figure 22: Cell of a GRU (Bianchi et al., 2017) 

 

GRU has two gates, which are update gate, and reset gate (Pal & Prakash, 2017). The forget and 

input gates in LSTM are combined to form a single update gate in GRU (Bianchi et al., 2017). 

The function of update gate is to adaptively decide how much must be remembered or forgotten 

by the hidden units, while the memory of a cell can be reset by the reset gate (Bianchi et al., 

2017). 

 

The state equations of GRU given by Bianchi et. al. (Bianchi et al., 2017) are: 

 

Reset gate:   r[t] = σ(Wrh[t −1] + Rrx[t] + br) 

Current state:   h’[t] = h[t −1] (∙) r[t] 

Candidate state:  z[t] = g(Wzh’[t −1] + Rzx[t] + bz) 

Update gate:   u[t] = σ(Wuh[t −1] + Rux[t] + bu) 

New state:   h[t] = (1−u[t]) (∙) h[t −1] + u[t] (∙) z[t] 

Equation 35 

 

where, σ(·) denotes a sigmoid function; g1(·) and g2(·) are point wise nonlinear activation 

function, and (∙) is the entry wise multiplication between two vectors; Wu, Wz, Wr, Ru, Rz, and Rr 
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are weights matrices of the recurrent connections; bu, bz, and br are bias vectors (Bianchi et al., 

2017). 

 

Optimization  

Some kind of optimization is generally involved in the deep learning algorithms. However, the 

optimization algorithm used in deep models is quite different from the traditional optimization 

algorithms (Goodfellow et al., 2016). Unlike in pure optimization, in machine learning, a cost 

function J(θ) is reduced in order to improve some performance measure P, which is defined 

based on the test set (Goodfellow et al., 2016). An optimization algorithm is known as batch or 

deterministic gradient method if it uses the whole training set, while it is called stochastic or 

online method if only one example is used at a time (Goodfellow et al., 2016). Additionally, the 

optimization algorithm is called minibatch or minibatch stochastic or simply stochastic method if 

the training examples used are more than one but not all (Goodfellow et al., 2016). The 

optimization algorithms that were tried in the deep learning models developed for this study are 

briefly discussed below. 

 

Stochastic Gradient Descent (SGD): In contrast to gradient descent which follows downhill the 

gradient of the whole training set, SGD just uses randomly selected minibatches instead of the 

whole training set and hence, significantly accelerates the process (Goodfellow et al., 2016). 

Learning rate is the step size of following downhill and may be selected by trial and error or by 

observing the learning curve which plots the objective function as a function of time 

(Goodfellow et al., 2016). As per Goodfellow et. al. (Goodfellow et al., 2016), in SGD, the initial 

parameter θ is updated in iteration k as θ - єĝ, where є is the learning rate in iteration k, ĝ is 

gradient estimate which is equal to 1/m times the gradient of loss function L with respect to θ, 

which can be mathematically represented as: 

ĝ ← +(1/m)∇θ∑i L(f(x(i);θ),y(i)) 

θ ← θ - єĝ 

Equation 36 

where y(i) is the target corresponding to a minibatch {x(1), ..., x(m)} of m examples taken from the 

training set (Goodfellow et al., 2016). 

 

Regularization 

For machine learning models, the error measured on the training set is called training error, while 

that measured on the unobserved or new inputs is called generalization error or test error 

(Goodfellow et al., 2016). As per Goodfellow et. al. (Goodfellow et al., 2016), underfitting and 

overfitting are two challenges in machine learning. Underfitting is said to occur when the model 

is unable to get sufficiently low training error while overfitting occurs when there is a big gap 

between the training error and test error (Goodfellow et al., 2016).   

 

As described by Goodfellow et. al. (Goodfellow et al., 2016), regularization refers to any change 

made in the learning algorithm to decrease its generalization error, but not the training error. 

There are various techniques described in the literature for applying regularization. Some of the 

regularization strategies for deep learning models discussed by Goodfellow et. al. (Goodfellow et 

al., 2016) includes parameter norm penalties, norm penalties as constrained optimization, data 

augmentation, noise robustness, early stopping, parameter tying and parameter sharing, dropout, 
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and adversarial training. Dropout technique was used in the deep learning models that were 

developed in this study for predicting short-term delay at border crossings. Hence, in this section, 

only the regularization by dropout is discussed. 

 

Dropout is the technique used for improving the learning of neural networks and reduce 

overfitting (Skansi, 2018). Dropout can be applied by adding the dropout parameter π having a 

value between 0 and 1, and by doing so every weight will be set to zero with a probability of π in 

each epoch (Skansi, 2018). As per Goodfellow et. al. (Goodfellow et al., 2016), the advantages 

of dropout are that it is very computationally inexpensive and it does not restrict much the choice 

of model or training procedure that can be used.  

 

MODELING DATASET 

The dataset used in this part of the research was obtained from the Niagara International 

Transportation Technology Coalition (NITTEC). It contains the traffic delay data for the U.S. 

bound car traffic moving over each of the three Niagara frontier border crossing bridges – the 

Peace Bridge, the Lewiston-Queenston Bridge, and the Rainbow Bridge. Delay data were 

recorded via BLUFAX Bluetooth readers at a frequency of one minute. For this study, the data 

used was collected from March 1, 2018, to December 31, 2018, which is a total of ten-months 

data.  

 

The data had very few missing points, only 24, out of a total of 13,21,920 data points from all the 

three bridges combined, were missing. The missing values were filled by taking the average of 

the previous value and the next available value. By observing the data, it was found that traffic 

delay did not fluctuate much every minute and hence, it seemed rational to aggregate the data to 

five-minute intervals. This U.S. bound traffic delay data of ten months on the three bridges 

aggregated to five-minute intervals is referred to herein as the ‘complete set’. 

 

Further, to evaluate the effect of days of the week on traffic delay and also, to assess the ability 

of deep learning techniques to model categorized data, the complete set was split into ‘weekday 

set’ and ‘weekend set’. The weekday set consisted of the delay data only during weekdays, 

whereas the weekend set comprised of delay data only during weekends. Therefore, three set of 

data were available for the study – complete set, weekday set, and weekend set. The complete 

set, weekday set, and weekend set comprise of 88128, 62784, and 25344 data points 

respectively. 

 

Data Collection 

The data used for this study was collected by the Bluetooth readers installed in recent years at the 

border crossings: The Peace Bridge, the Lewiston-Queenston Bridge, and Rainbow Bridge. This 

data had the information about the U.S. bound passenger cars’ traffic delay collected at an 

interval one minute. The Bluetooth wait time measurement system installed at the Peace Bridge 

and the Lewiston-Queenston Bridge crossings uses Traffax readers and FastLane BluFaxWeb 

software for computing the average wait time by vehicle time and direction (Roelofs et al., 

2016).  

 

Bluetooth is a telecommunications industry specification that defines the way in which the 

digital devices can interconnect easily using short-range wireless communications (“tpa-na 
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Traffic Monitoring,” n.d.). The BluFax monitoring system can collect the travel times by 

sampling a portion of actual travel times from the traffic stream (“tpa-na Traffic Monitoring,” 

n.d.). It measures the travel times by matching the MAC addresses of Bluetooth devices at two 

different locations (“tpa-na Traffic Monitoring,” n.d.). 

 

As stated at tpa-na.com (“tpa-na Traffic Monitoring,” n.d.), Bluetooth devices have the following 

advantages over other existing methods: 

 Unlike existing point detection technology, which includes inductive loops, radar 

detectors, image processors, etc., Bluetooth technology measures travel time directly by 

the equipment, and as a result, has greater accuracy (“tpa-na Traffic Monitoring,” n.d.). 

 It can be applied globally because of the proliferation of the Bluetooth standard protocol 

(“tpa-na Traffic Monitoring,” n.d.). 

 It can measure the travel times for different modes like highway vehicles, rail, and 

pedestrians because the Bluetooth devices are associated with people, not the vehicle 

(“tpa-na Traffic Monitoring,” n.d.). 

 As there are no databases of Bluetooth addresses, Bluetooth technology offers more 

privacy than toll tag tracking, cellular telephone geolocation, or license plate surveys 

(“tpa-na Traffic Monitoring,” n.d.). 

 The field installation procedure is simple (“tpa-na Traffic Monitoring,” n.d.). 

The red pointers in Figure 23, Figure 24, and Figure 25, shows the location of Bluetooth reader 

installation at the different bridges. The information about this location was provided by 

NITTEC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Location of Bluetooth readers at Peace Bridge 
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Figure 24. Location of Bluetooth readers at Queenston Lewiston Bridge 

 

 

 

Figure 25. Location of Bluetooth readers at Rainbow Bridge 
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MODEL DEVELOPMENT 

In this study, the short-term car traffic delay was predicted by forecasting time series using the 

deep learning methods, namely Multilayer Perceptron (MLP), Convolutional Neural Networks 

(CNN), Long Short-Term Memory Recurrent Neural Networks (LSTM RNN), and Gated 

Recurrent Unit Recurrent Neural Networks (GRU RNN).  

 

Each modeling dataset (complete set, weekday set, and weekend set) was split into train set, 

validation set, and test set. The train set was used for training the models. The validation set was 

used for selecting the hyperparameters by comparing the performance of various models to select 

the best one. Lastly, the test set was used to report the results from the selected model. The first 

60% of the dataset formed the train set, the next 20% was used as a validation set and the last 

20% as a test set.   

 

The dataset that was fed into the model was a time series of traffic delay (in minutes) at every 5 

minute interval. The model takes traffic delay at prior time steps as its input and outputs the 

traffic delay predicted for the future. The model was developed such that it outputs the predicted 

delay for the next 12 time steps. Therefore, the model output is the predicted traffic delay for the 

next 5 minutes, 10 minutes, 15 minutes, and so on till the next 60 minutes in the future. The 

number of prior time steps that the model takes as input can be varied. Mathematically, if the 

time is t and the model is set to take n number of prior time steps then the model inputs will be 

the delay at time t, t-5, t-10, and so on up to n time steps. Whereas, the model outputs will be the 

delay at time t+5, t+10, t+15, and so on till t+60.  

 

The models developed trained using the whole data or complete data are called ‘complete set’ 

models. The models trained only on weekday data are called ‘weekdays’ model and those trained 

only on weekend data are called ‘weekends’model. The predicted delays obtained from the 

models were compared with the actual delay to evaluate the predictive accuracy of deep learning 

models, compare the performance of the four deep learning techniques and to find the effect of 

data classification on model’s prediction accuracy.  

 

The models developed for this study were build using Keras (v2.2.2) deep learning library, 

backend by TensorFlow (v1.9.0) in the programming language Python (v3.5.6) on a computer 

with 8.00 GB RAM and Intel®Core™i56200U CPU. The various libraries used in the python 

codes includes scikit-learn, numpy, matplotlib, pandas, and math. The python codes used in this 

study for developing and comparing the deep learning models are inspired by the codes 

presented by (Brownlee, 2016, 2018; Pal & Prakash, 2017). Additionally, (Ardit, 2017; 

“Customizing Ticks | Python Data Science Handbook,” n.d.; “Home - Keras Documentation,” 

n.d.; “Matplotlib: Python plotting — Matplotlib 3.0.3 documentation,” n.d.; “scikit-learn: 

machine learning in Python — scikit-learn 0.20.3 documentation,” n.d.; “The Python Tutorial — 

Python 3.7.2 documentation,” n.d.) were a source of help in the writing of the Python codes. 
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MODEL RESULTS 

This section provides the results of the deep learning models developed to predict the U.S. bound 

car traffic delay at the three border crossings between the U.S. and Canada – Peace Bridge (PB), 

Lewiston-Queenston Bridge (QL), and Rainbow Bridge (RB). The prediction performance of 

models was measured by the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), 

and R squared (R2). The results obtained from each of the deep learning models are presented in 

detail in the subsequent sub-sections.           

                                                                                                                                                                                                                                                                                                                                                                                                                                                                        

Multilayer Perceptron (MLP) 

The MLP model was developed to predict the U.S. bound car traffic delay for the next 5 

minutes, 10 minutes, 15 minutes, … up to 60 minutes. However, for simplicity, the model 

results of only next 5, 15, 30, 45, and 60 are shown in  

. 

 

Table 7 : MLP model result 

 

Prediction 

Horizon 
 Measure 

PB QL RB 

Whole 

set 

Week 

days 

Week 

ends 

Whole 

set 

Week 

days 

Week 

ends 

Whole 

Set 

Week 

days 

Week 

ends 

5 minutes 

MAE  1.14 1.38 0.92 1.02 1.03 1.08 1.09 1.27 1.62 

RMSE 2.94 3.49 3.28 2.12 2.17 1.96 1.7 1.6 2.34 

R2 0.95 0.89 0.96 0.95 0.94 0.96 0.93 0.81 0.83 

15 minutes 

MAE  2.1 2.16 2.01 1.93 1.87 2.19 2.02 2.15 2.57 

RMSE 7.02 6.6 8.5 7.65 7.01 9.21 3.37 3.04 4.31 

R2 0.79 0.7 0.86 0.83 0.8 0.86 0.79 0.66 0.73 

30 minutes 

MAE 2.77 2.71 2.72 2.64 2.44 3.06 2.68 2.76 3.35 

RMSE 4 3.96 4.29 4.76 4.65 5.24 5.22 5.77 6.54 

R2 0.64 0.52 0.75 0.71 0.68 0.74 0.65 0.5 0.6 

45 minutes 

MAE 3.08 2.98 3.15 3 2.75 3.59 3.06 3.03 3.83 

RMSE 4.52 4.4 5.11 5.48 5.34 6.16 6 6.17 7.25 

R2 0.54 0.41 0.64 0.62 0.57 0.64 0.54 0.43 0.5 

60 minutes 

MAE 3.11 3.08 3.49 3.25 2.96 3.99 3.34 3.24 4.24 

RMSE 4.85 4.68 5.75 6.1 5.82 6.96 6.61 6.64 8.01 

R2 0.48 0.33 0.54 0.53 0.49 0.54 0.44 0.34 0.39 

Computation time (s) 165.93 92.74 90.34 114.15 57.28 29.74 62.63 65.73 29.57 

 

 

From  

, and considering all time horizons, it can be seen that MAEs of weekdays are mostly less than 

those of their corresponding complete set (for 5 minute prediction in particular, MAEs of the 

complete set were actually less than those of their corresponding weekdays). Additionally, it can 

be noted that except for a few predictions, the MAEs of weekends are the highest among the 

three datasets of the same bridge and prediction horizon. 
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It can also be observed that with the increase of prediction horizon, MAE has always increased 

while R squared has always decreased for all datasets and all bridges. This, to be expected, 

decrease in the prediction accuracy with the increase in prediction horizon is reflected in Figure 

26 and Figure 27. Figure 26 and Figure 27 compare the actual delay with the predicted delay for 

the next 5 and 30 minutes respectively. It can be seen that the model is able to very well follow 

the actual delay in the case of the next 5 minute delay prediction, while its performance has 

decreased when predicting 30 minutes into the future, especially for the high peaks arriving 

abruptly.  

 

Figure 26. Comparing the actual U.S. bound traffic delay with 5 minutes ahead prediction 

of delay by the MLP model at Peace Bridge for a sample of 180 data points  

 

 

Figure 27: Comparing the actual U.S. bound traffic delay with 30 minutes ahead prediction 

of delay by the MLP model at Peace Bridge for a sample of 180 data points 
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Convolutional Neural Networks (CNN) 

shows the model results of the CNN model in predicting delay for the next 5, 15, 30. 45, and 60 

minutes. From Table 8, it is clear that the MAEs of weekdays are mostly lesser their 

corresponding complete set, whereas, weekends always had the highest MAE among the three 

datasets of the same bridge and same prediction horizon. 

 

Table 8: CNN model results 

 

Prediction  

Horizon 

 Measur

e 

PB QL RB 

Whole 

Set 

Week 

days 

Week 

ends 

Whole 

set 

Week 

days 

Week 

ends 

Whole 

Set 

Week 

days 

Week 

ends 

5 minutes 

MAE  0.91 0.98 1.09 0.93 1.01 1.38 1.14 0.98 1.22 

RMSE 2.86 2.79 3.85 1.96 2.15 2.55 1.8 1.58 2.02 

R2  0.95 0.94 0.96 0.96 0.94 0.94 0.93 0.94 0.95 

15 

minutes 

MAE  1.97 2.1 2.11 1.93 1.85 2.29 2.07 1.93 2.19 

RMSE 6.82 6.22 8.09 7.59 6.98 9.46 3.35 2.96 4.11 

R2 0.8 0.73 0.85 0.83 0.8 0.84 0.79 0.78 0.85 

30 

minutes 

MAE 2.57 2.64 2.72 2.58 2.42 3.04 2.7 2.51 3.03 

RMSE 3.9 3.79 4.3 4.79 4.67 5.42 5.21 4.85 5.43 

R2 0.66 0.56 0.75 0.71 0.67 0.72 0.65 0.65 0.72 

45 

minutes 

MAE 2.9 2.97 3.19 2.91 2.72 3.52 3.02 2.85 3.51 

RMSE 4.45 4.21 5.03 5.51 5.36 6.37 5.84 5.6 6.39 

R2 0.56 0.46 0.65 0.61 0.57 0.62 0.57 0.53 0.61 

60 

minutes 

MAE 3.12 3.03 3.5 3.16 2.94 3.89 3.27 3.04 3.89 

RMSE 4.77 4.42 5.53 6.09 5.85 7.09 6.34 6.05 7.17 

R2 0.49 0.4 0.58 0.53 0.49 0.52 0.49 0.45 0.51 

Computation time (s) 266.41 268.21 124.1 479.51 264.37 382.8 358.26 484.07 332.62 

 

Similar to MLPs, the MAEs have always increased and R squared has always decreased with the 

increase in prediction horizon. The longest computation time for any CNN model developed in 

this study was 484.07 seconds, while the minimum was 124.1 seconds. 

 

Figure 28 compares the actual and predicted delay for the next 30 minutes by the CNN model. It 

can be seen from Figure 28,  that the prediction made by this model is able to follow the trend of 

the time series.  
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Figure 28. Comparing the actual U.S. bound traffic delay with 30 minutes ahead prediction 

of delay by CNN model at Peace Bridge for a sample of 180 data points 

 

Long Short-Term Memory Recurrent Neural Networks (LSTM RNN)  

The model results of LSTM RNN model are tabulated in Table 9. From Table 9 it can be 

noted that the MAE of weekdays are always the least among the whole set or the weekends, 

while the weekends are often the highest. With the increase in the prediction horizon, the 

MAEs have increased, while R squared has reduced. The computation time of LSTM RNN 

models developed in this study varied from 50.41 seconds to 184.07 seconds.  

 

 
Figure 29 shows the graphical representation of actual delay and delay predicted by LSTM RNN 

model. The graph shows the ability of the model to tune its prediction with the changes in the 

prior time steps of the time series. 

 

Table 9. LSTM RNN model results 
  

Prediction 

Horizon 
 Measure 

PB QL RB 

Whole 

set 

Week 

days 

Week 

ends 

Whole 

Set 

Week 

days 

Week 

ends 

Whole 

Set 

Week 

days 

Week 

ends 

5 minutes 

MAE  1.02 0.91 0.95 1.14 0.86 1.34 1.27 0.92 1.51 

RMSE 3.33 3.16 3.2 2.45 1.94 2.58 1.9 1.5 2.37 

R2 0.93 0.93 0.97 0.94 0.95 0.95 0.86 0.94 0.87 

15 

minutes 

MAE  2.01 1.93 1.98 1.99 1.84 2.27 2.14 1.87 2.43 

RMSE 6.95 6.28 8.06 7.37 6.86 8.85 3.31 3 4.06 

R2 0.78 0.72 0.86 0.82 0.81 0.85 0.74 0.79 0.76 
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30 

minutes 

MAE 2.51 2.44 2.66 2.6 2.43 3.04 2.73 2.47 3.16 

RMSE 3.96 3.73 4.35 4.92 4.58 5.3 5.35 4.75 6.17 

R2 0.65 0.57 0.74 0.69 0.69 0.74 0.64 0.66 0.64 

45 

minutes 

MAE 2.88 2.74 3.07 2.94 2.72 3.53 3.09 2.78 3.57 

RMSE 4.46 4.17 5.02 5.51 5.26 6.21 6.01 5.4 6.85 

R2 0.56 0.47 0.65 0.61 0.58 0.64 0.54 0.56 0.56 

60 

minutes 

MAE 3.12 3.01 3.39 3.14 2.93 3.92 3.34 2.99 3.94 

RMSE 4.85 4.46 5.51 6.07 5.73 6.98 6.5 5.85 7.52 

R2 0.47 0.39 0.58 0.53 0.51 0.54 0.46 0.49 0.46 

Computation time (s) 184.07 136.06 67.39 167.89 171.03 62.85 166.93 150.95 50.41 

 

 

 

 
Figure 29 : Comparing the actual U.S. bound traffic delay with 30 minutes ahead 

prediction of delay by LSTM RNN model at Peace Bridge for a sample of 180 data points 

 

Gated Recurrent Unit Recurrent Neural Networks (GRU RNN) 

Table 10 shows the prediction results for the next 5, 15, 30, and 45 minutes, where it can be seen 

that the MAEs of weekdays are usually less than that of their corresponding complete set. 

Similar to the MLP, CNN, and LSTM RNN, the MAE and R squared of GRU RNN increases 

and reduces respectively with the increase in prediction horizon. The computation time of GRU 

RNNs developed for this study ranges between 30.09 seconds and 173.5 seconds.  

 

Table 10: GRU RNN model results 

 

Prediction 

Horizon 
 Measure 

PB QL RB 

Whole 

Set 

Week 

days 

Week 

ends 

Whole 

set 

Week 

days 

Week 

ends 

Whole 

set 

Week 

days 

Week 

ends 

5  

minutes 

MAE  1.21 0.99 1.13 0.96 1.05 1.23 1.37 1.27 1.16 

RMSE 2.88 2.8 5.22 2.04 2.48 2.36 2.01 1.66 1.93 

R2 0.94 0.94 0.95 0.96 0.93 0.96 0.89 0.84 0.96 

15 

minutes 

MAE  2.11 2.08 2.02 1.93 1.92 2.17 2.26 2.13 2.19 

RMSE 7.01 6.26 7.97 7.48 6.68 8.93 3.52 2.96 4.13 
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R2 0.78 0.73 0.86 0.83 0.79 0.86 0.74 0.68 0.85 

30 

minutes 

MAE 2.6 2.58 2.68 2.58 2.45 2.92 2.8 2.8 3.01 

RMSE 4.03 3.78 4.34 4.7 4.76 5.08 5.38 5.91 5.37 

R2 0.64 0.56 0.74 0.72 0.66 0.76 0.63 0.48 0.73 

45 

minutes 

MAE 2.96 2.79 3.17 2.93 2.74 3.41 3.18 3.13 3.47 

RMSE 4.53 4.15 5.05 5.42 5.44 5.95 6.19 6.58 6.31 

R2 0.54 0.47 0.65 0.63 0.56 0.67 0.51 0.35 0.62 

60 

minutes 

MAE 3.15 3.12 3.49 3.17 2.92 3.82 3.44 3.31 3.86 

RMSE 4.9 4.47 5.57 5.97 5.89 6.74 6.68 6.87 7.12 

R2 0.46 0.39 0.57 0.55 0.48 0.57 0.43 0.29 0.52 

Computation time (s) 173.5 111.96 41.47 207.15 111.63 30.75 165.34 114.08 30.09 

Figure 30 shows the graphical representation of actual delay and delay predicted by GRU RNN 

model for the next 30 minutes, where it can be seen that the predicted values mostly follow the 

actual delay but misses out abrupt peaks.  

 

 

Figure 30: Comparing the actual U.S. bound traffic delay with 30 minutes ahead prediction 

of delay by GRU RNN model at Peace Bridge for a sample of 180 data points 

 

MODEL COMPARISON 

To find the most suitable deep learning technique in predicting short term delay, the model 

results of the four techniques used in this study were compared for all three bridges and for 

different prediction horizons. Figure 31and Figure 32 compare the four techniques based on the 

MAEs of the predicted delay at each bridge for 30 minutes ahead and 60 minutes ahead 

prediction respectively.    

 

From Figure 31, it can be noticed that the lowest MAE for the next 30 minute prediction at PB 

and RB were obtained from LSTM RNN and MLP models, respectively. Whereas, both CNN 

and GRU RNN models gave the lowest MAE for 30-minute prediction at QL. Further, from 

Figure 32 it can be seen that the lowest MAE for the next 60-minute prediction at PB, QL, and 
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RB were given by MLP, LSTM RNN, and CNN model, respectively. Clearly, there does not 

seem to be an absolute winner among these techniques.    

  

 

Figure 31: Comparing MAE of delay prediction for next 30 minutes by MLP, CNN, LSTM-

RNN, and GRU-RNN at PB, QL, and RB  
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Figure 32: Comparing MAE of delay prediction for the next 60 minutes by MLP, CNN, 

LSTM-RNN, and GRU-RNN at PB, QL, and RB 
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As mentioned earlier, the delays at prior time steps were fed into the model as input. The 

number of prior time steps that were fed into the models was considered as one of the 

hyper-parameters of the model, which were selected using manual hyper-parameter 

tuning. In other words, the study tried using different numbers of prior time steps as input, 

and evaluated the results in order to determine the best number of prior time steps that 

should be used.  

 shows the number of prior time steps that gave the time steps for each model. It must be noted 

here that each time step represents a 5-minute interval.  Hence, for instance, 12-time steps would 

refer to 12 X 5 = 60 minutes, i.e., delays for the last 60 minutes. 

 

Table 11: Number of prior time steps used as input for different models 

 

Border Crossing Model MLP CNN 

LSTM-

RNN 

GRU-

RNN 

Peace Bridge 

Complete set 16 24 30 18 

Weekdays 16 18 24 18 

Weekends 24 16 18 48 

Lewiston-Queenston Bridge 

Complete set 24 18 60 36 

Weekdays 16 18 18 48 

Weekends 36 30 48 48 

Rainbow Bridge 

Complete set 16 30 48 36 

Weekdays 16 18 18 24 

Weekends 36 18 18 24 

 

EFFECT OF DATA CLASSIFICATION ON MODEL RESULTS 

As previously mentioned, the traffic delay time series dataset was classified into weekdays and 

weekends and thus, three different types of models were developed using the three datasets, 

which were: the complete or the whole set, the weekdays dataset, and the weekends dataset. This 

section presents the results of the analysis done to investigate the effect of data classification on 

model results.  

 

The model performance of the complete set models may be compared with weekdays and 

weekends models by simply comparing the MAEs in their prediction. However, this might not 

give the most accurate results as it involves oversampling. This is because the MAEs obtained 

from the complete set models take into account both weekdays and weekends data. To evaluate 

the effect of data classification on the performance of deep learning models in a way that avoids 

the problem of oversampling, the models were run again and the MAEs in the prediction of a 

specific interval of weekday data points and weekend data points by the complete set model were 

compared with the MAEs in the prediction of the same data points by the weekdays and 

weekends model respectively. The length of this interval of data points used for the comparison 

was selected as 288 as it represents the observations of 24 hours ((24*60)/5 =288).  
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Table 12 shows the comparison of the MAEs in the prediction of weekday data points and 

weekend data points of the complete set models with the MAEs in the prediction of the 

same data points by the weekday and weekend model respectively for 30 minutes ahead 

U.S. bound traffic delay prediction at PB. From  

Table 12, it can be seen that the MAEs of the weekday data points for the complete data set were 

consistently either less than (or equal to) those obtained for the weekday-specific model.  On the 

other hand, the MAE for the weekend data-points for the complete set did not show a consistent 

trend, with the values for the complete set less than the weekend-specific model for MLP and 

LSTM-RNN, and greater than the weekend-specific model for CNN and GRU-RNN.  
 

Models 
Complete set 

Weekday 

Models 

Weekend 

Models Weekday 

data points 

Weekend 

data points 

MLP 2.25 3.25 2.25 3.44 

CNN 2.27 3.38 2.36 3.28 

LSTM-RNN 2.15 3.29 2.19 3.39 

GRU-RNN 2.13 3.39 2.2 3.21 
 

Table 12: Comparison of MAEs of specific data points in the prediction of delay 30 minutes 

in future at PB by different models 

 

To further analyze the effect of data classification, the same comparison was made for 

predictions 60 minutes in the future, as shown in Table 13. 

 

Models 
Complete set 

Weekdays Weekends Weekday 

data points 

Weekend 

data points 

MLP 2.33 3.96 2.38 4.13 

CNN 2.5 4.1 2.56 4.05 

LSTM-RNN 2.45 3.91 2.48 4 

GRU-RNN 2.3 4.01 2.52 4.06 
 

Table 13: Comparison of MAEs of specific data points in the prediction of delay 60 minutes 

in the future at PB by different models  

 

From Table 13, it was observed that mostly the MAEs of the weekday data points and weekend 

data points of complete set were lesser than the MAEs of weekdays model and weekends model 

respectively. However, there are exceptions to this. In all, it doesn’t seem that the data 

classification increases the predictive accuracy of the models.  

 

DISCUSSION 

To the best of our knowledge, our study is the first time that (1) Bluetooth Data from the three 

Niagara Frontier Border Crossings are used for predicting the border crossing delay, and (2) 

Deep Learning techniques like CNN, LSTM-RNN, and GRU-RNN are used for predicting delay 

at the border crossings. The models developed in this study predict delay for next 5, 10, 15, … 
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and so on up to 60 minutes into the future. This information can guide the travelers in selecting 

the border crossing based on the delay situation. Travelers might have the tendency to choose the 

border crossing with the least delay and this would help in the uniform distribution of traffic 

across the crossings. Lin et al. (Lin, Wang, Sadek, et al., 2014) also emphasized on the necessity 

of predicting the future border crossing delay, which can be helpful for the border crossing 

authorities in determining the needed staffing level, and also in routing the border-destined 

traffic intelligently. 

 

The delay prediction process used in this study did not include any data cleaning. The delays 

were just aggregated to 5 minutes and were fed to the models as an input. This makes the model 

development and prediction process very straight forward and easy. Unlike some of the previous 

studies (A. M. Khan, 2010; Lin F. B. & Lin M. W., 2001), the delay is predicted by models that 

were developed (trained, validated, and tested) using field data collected by the Bluetooth 

readers. Also for the delay analysis part, some of the previous studies (Zhang & Lin, 2017; 

Zhang et al., 2017) which analyzed the delay at Niagara Frontier Border Crossings lacked the 

availability of delay data collected by the Bluetooth readers from the Rainbow Bridge. However, 

the current study analyses the delay using the data collected from all three border crossings. This 

might have helped in making this research more realistic and appropriate for real-world 

applications. 

 

The current study differs in many ways from the previous studies which aimed to predict the 

delays at the border crossings. Lin and Lin (Lin F. B. & Lin M. W., 2001) proposed a delay 

model which was based on various factors like vehicle processing capacity of a toll gate or 

inspection gate, volume/capacity ratio, number of available gates, etc. However, the models 

developed in the current study can predict delay by just using previous delays. Khan (A. M. 

Khan, 2010) and Moniruzzaman et. al. (Moniruzzaman et al., 2016) developed ANN for 

predicting the crossing time, whereas the current study extended these works by using deep 

learning techniques like CNN, LSTM-RNN, and GRU-RNN which have not been used for this 

purpose earlier.  

 

Moniruzzaman et. al. (Moniruzzaman et al., 2016) forecasted the crossing times for trucks at the 

Ambassador Bridge border crossing through the ANN model and the training of the model relied 

on lags of crossing time, truck volume on the bridge, hours of day, and day of week. In contrast, 

the current study predicted the delays for the passenger cars on the Niagara Frontier Border 

Crossings.  Another difference is that the training of models in the current study was based 

purely on previous delays at the crossings. Having just one variable might limit the prediction 

accuracy of the models but makes the model easy to develop and makes it easier to obtain the 

input data. Additionally, it was felt that the information of time of day is already taken into 

account by the model as the previous delays are fed as the input. Lastly, rather than just focusing 

on one border crossing as in the case of Moniruzzaman et. al. (Moniruzzaman et al., 2016), the 

current study focuses on predicting delay at three border crossings which are located in the same 

region. This clearly broadens the scope of the current study as the idea is not just to develop 

models which can predict delay at any border crossing but also to guide the travelers in making 

decision about selecting the crossing that is most appropriate to them, which in turn should help 

in increasing the efficiency of the borders. 
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In this study, the delays are predicted directly using the delay data collected from the Bluetooth 

readers. This can be seen as an improvement over the stepwise border crossing delay prediction 

model suggested in some of the past studies (Lin, Wang, & Sadek, 2014; Lin, Wang, Sadek, et 

al., 2014), in which first the future volumes were predicted using past volumes and then using 

the predicted future volumes, future delay were forecasted. This simplicity in the procedure is 

also reflected in the prediction accuracy of the current study. The mean absolute difference for 

15 minutes ahead forecast of delay at Peace Bridge by this study was just 1.97 minutes (by 

complete set CNN model), while that obtained by Lin et. al. (Lin, Wang, Sadek, et al., 2014) was 

about 6.6 minutes. This suggests a higher prediction accuracy of the current study. Not just the 

improvement in prediction accuracy, the computation time of the models developed in this study 

were drastically shorter than that required by Lin et. al. (Lin, Wang, & Sadek, 2014). 

 

The results from this study suggest high-level accuracy of the deep learning techniques in 

predicting future traffic delays at the border crossings, with MAEs less than 3.5 minutes in 

predicting delays for up to 60 minutes into the future by complete set models. Previous studies 

(Dalto et al., 2015; Fu et al., 2016; Koprinska et al., 2018; Ma et al., 2015) have also supported 

the superior prediction performance of some of the techniques used in this study. However, 

prediction-wise, no one deep learning technique emerged as a clear winner among others in 

predicting the delays. The best deep learning technique that gives the most accurate results 

changed with the border crossing and the prediction horizon. Although, mostly the prediction 

accuracies obtained from each of the technique were pretty close to each other. The hyper-

parameters of the deep learning models were selected manually by observing the change in the 

models’ performance on the validation set. The set of hyper-parameters that gave the least mean 

absolute error (MAE) was finalized. However, it was found that the MAEs did not change 

significantly by tuning the hyper-parameters, suggesting that the models are robust. 

 

CONCLUSIONS AND FUTURE WORK 

Traffic delays at the United States-Canada border crossings have adverse effects on the economy 

as well as the environment. There have been some studies in the past which aimed to analyze the 

delay at the Niagara Frontier Border Crossings (Zhang & Lin, 2017; Zhang et al., 2017) and 

others which predicted the future delay/crossing time at the border crossings (A. M. Khan, 2010; 

Lin F. B. & Lin M. W., 2001; Lin, Wang, & Sadek, 2014; Lin, Wang, Sadek, et al., 2014; 

Moniruzzaman et al., 2016). This study was intended to build upon these previous efforts. 

 

This study predicted passenger cars’ traffic delays at the three Niagara Frontier Border 

Crossings, namely the Peace Bridge, the Lewiston-Queenston Bridge, and the Rainbow Bridge 

for the next 60 minutes into the future.  This was based upon border wait time data collected by 

Bluetooth readers recently installed at the crossings. Border crossing traffic delays were 

predicted using four deep learning techniques, namely Multilayer Perceptron (MLP), 

Convolutional Neural Networks (CNN), Long Short-Term Memory Recurrent Neural Networks 

(LSTM-RNN), and Gated Recurrent Unit Recurrent Neural Networks (GRU-RNN). The hyper-

parameters of the models were selected through manual hyper-parametric tuning.  

 

Limitations and Future Work 

The current study focused on predicting future delay using four deep learning techniques, namely 

MLP, CNN, LSTM-RNN, and GRU-RNN. This task can also be performed by using some other 
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deep learning techniques so as to explore the prediction performance of those techniques. This 

research can also be extended by making predictions using statistical models and comparing their 

performance with the techniques employed in the current study. This can help in conducting 

comparative analysis among the deep learning techniques and statistical models. 

 

In the current study, predictions were made using just previous delay as input to the deep 

learning models. The prediction performance can be improved by adding more input variables 

like car volume, number of open lanes, weather information, holidays, traffic accidents, etc. 

Lastly, similar future delay predicting models can also be developed for Canada bound traffic 

over the Niagara Frontier Border Crossings. Additionally, this work can be extended to other 

border crossings as well. 

 

STUDY’S CONCLUSIONS 

This project was intended to take advantage of the wealth of data, now available thanks to the 

recent advances in sensing and communications, to develop predictive models for predicting 

border crossing delays at the Niagara Frontier border crossing. Specifically, the project first 

developed an Android smartphone application to collect, share and predict waiting time at the 

three border crossings.  Secondly, models, based on state-of-the-art Machine Learning (ML) 

techniques, were developed for interval prediction of short-term traffic volume at the border; 

these models were then utilized to determine optimal staffing levels at the border.  Finally, by 

taking advantage of Bluetooth, border delay data recently collected at the three Niagara Frontier 

borders, the project developed deep learning models for the direct prediction of border delay.  

The suite of models and tools developed under this work have the potential to revolutionize 

border crossing management, balance traffic load at the three crossings, and help travelers avoid 

significant border delays. 
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	EXECUTIVE SUMMARY 
	In recent years, and as a result of the continued increase in travel demand across the border coupled with the need for tighter security and inspection procedures after September 11, border crossing delay has become a critical problem with tremendous economic and social costs. This project aims at taking advantage of the wealth of data, now available thanks to the recent advances in sensing and communications, to develop predictive models which can be used to predict the delay a passenger car or a truck is 
	 
	In this project, UB TransInfo researchers completed the following three additional tasks: (1) the development of an Android smartphone application to collect, share and predict waiting time at the three Niagara Frontier border crossings; (2) the development of Machine Learning (ML) models for interval prediction of short-term traffic volume, which were then utilized to determine optimal staffing levels at the border; and (3) the development of deep learning models for predicting border delay directly from B
	 
	The Android app developed under this project is called the Toronto Buffalo Border Wait Time (TBBW) app. The innovative app offers the user three types of waiting time estimates: (1) current waiting times collected at the crossings; (2) historical waiting times; and (3) future waiting time predicted for the next 15 minutes and updated every five minutes. For the current waiting time, the app can provide both the data collected by border crossing authorities as well as user-reported or “crowd-sourcing” data s
	 
	For interval prediction, the study improved on a hybrid machine learning model based on Particle Swarm Optimization (PSO) and Extreme Learning Machine (ELM) neural network. The improved PSO-ELM models are developed for an hourly border crossing traffic dataset and compared to other state-of-the-art models. The results show that the improved PSO-ELM can always keep the mean PI length the lowest, and guarantee that the PI coverage probability is higher than the corresponding PI nominal confidence, regardless 
	plans for border crossing authority based on bounds of PIs and point predictions. The results show that for holidays, the staffing plans based on PI upper bounds generated much lower total system costs, and that those plans derived from PI upper bounds of the improved PSO-ELM models, are capable of producing the lowest average waiting times at the border.  
	 
	Finally, the study developed deep learning models for predicting border delay directly from blue tooth delay data collected at the Niagara Frontier borders.  Four deep learning techniques were utilized: Multilayer Perceptron (MLP), Convolutional Neural Networks (CNN), Long Short-Term Memory Recurrent Neural Networks (LSTM-RNN), and Gated Recurrent Unit Recurrent Neural Networks (GRU-RNN). The prediction accuracies of these models were evaluated by computing the Mean Absolute Error (MAE), Root Mean Squared E
	 
	 
	Key Words: Border Crossing; Waiting Time; Crowd Sourcing; Short Term Traffic Volume Prediction Model; Android; Particle Swarm Optimization; Extreme Learning Machine; Prediction Interval; Staffing Plan; Deep Learning; Multilayer Perceptron; Convolutional Neural Networks; Long Short-Term Memory Recurrent Neural Networks; Gated Recurrent Unit Recurrent Neural Networks. 
	 
	  
	 
	INTRODUCTION 
	Due to the continuous travel demand increase, coupled with tighter security and inspection procedures after September 11, border crossing delay has become a critical problem. As reported by the Ontario Chamber of Commerce, border crossing delay causes an annual loss of approximately $268.45 million for New York State.  For the whole U.S., the cost is much higher (OCC, 2005). According to a press release in 2008 given by the then U.S. Transportation Secretary, Mary E. Peters, border delays cost Canadian and 
	  
	To address these issues, transportation authorities have recently begun to provide travelers with information about current border crossing delays.  This is the case for example in the Buffalo-Niagara region, for example, where the Niagara International Transportation Technology Coalition (NITTEC) has been providing such information to the public for years. In the early years, the waiting time was obtained based on very rough and approximate estimates of queue length. More recently, NITTEC is using blue-too
	 
	Regardless of the method however, there is an inherent limitation associated with providing just the current border delay, which is likely to be quite different from the future wait time that the travelers would experience by the time they arrive at the border.  This is especially true if there is a significant lag between the time when travelers need to act on the information provided and the time of their arrival at the border. If the future waiting time can be predicted, it would be more informative for 
	 
	This project aims at taking advantage of the wealth of data, now available, to develop predictive models which can be used to predict the delay a passenger car or a truck is likely to encounter by the time the vehicle arrives at the border.  The project is building on previous work done by UB researchers, which broke down the problem into two steps: (1) the short-term prediction of the hourly traffic volume at the border; and (2) the development of queueing models which predict delay given knowledge of the 
	 
	In this project, we build on our previous work just described and undertake three additional major tasks to improve on border crossing delay prediction, and to provide the tools needed to 
	better manage the border and improve traffic operations there.  These additional tasks focused on: (1) the development of an Android smartphone application to collect, share and predict waiting time at the three Niagara Frontier border crossings; (2) the development of Machine Learning (ML) models for interval prediction of short-term traffic volume (i.e., predicting an interval within which predicted delay is expected to fall with a certain probability); these intervals were then utilized to determine opti
	 
	Besides the Introduction and the Conclusions section, this report is divided into three major sections, each dedicated to discussing one of the three research tasks mentioned above.  It should be noted that the first two sections of the report represent a compilation of the material previously published by the authors in the following two papers, Lin et al. (2015) and Lin et al. (2018).  The third section is based on material included in Chauhan’s M.S. thesis submitted to the University at Buffalo in April 
	 
	AN ANDROID SMARTPHONE APP FOR BORDER CROSSING WAIT TIME 
	The extremely data-rich environment of today provides an excellent opportunity for data mining and for extracting useful insights to help improve transportation systems’ efficiency.  One more factor that deserves consideration is the emergence of social media applications using smartphones which allow people to easily create, share and exchange information. For example, Waze is a community-based traffic and navigation app, acquired by Google in 2013, where drivers can share real-time traffic and road inform
	 
	In this part of the study, an Android smartphone application (app) called the Toronto Buffalo Border Wait Time (TBBW) was developed, to allow for sharing waiting time among travelers of the three Niagara Frontier border crossings, namely the Lewiston-Queenston Bridge, the Rainbow Bridge, and the Peace Bridge. Three types of waiting times are offered based on users’ preferences, including the current waiting time, the historical waiting time, and the future waiting time predicted by a real-time traffic delay
	  
	For the current waiting time, the app can provide both the data collected by the border crossing authorities and the user-reported or “crowd-sourcing” data shared by the community of users of the app. For the historical waiting time, the app provides statistical charts and tables to help users choose the crossing with the likely shortest waiting time. Moreover, the app can also provide future border waiting time for the next 15 minutes with an updating frequency of five minutes.  The future waiting times ar
	 
	PURPOSE AND SCOPE 
	The Niagara Frontier International Border includes three main bridges connecting Western New York, U.S. to Southern Ontario, Canada, namely the Lewiston-Queenston Bridge, the Rainbow Bridge, and the Peace. 
	The Niagara Frontier International Border includes three main bridges connecting Western New York, U.S. to Southern Ontario, Canada, namely the Lewiston-Queenston Bridge, the Rainbow Bridge, and the Peace. 
	Figure 1
	Figure 1

	 shows the yearly traffic volume going through Peace Bridge (one of the three crossings) from 2009 to 2013. As can be seen, for each direction to U.S. or to Canada, there are more than two million passenger vehicles and around 500,000 commercial vehicles going through Peace Bridge every year. This highlights the very large market of potential users and the great potential effect of this app. Besides that, thanks to the predictive capabilities of TBBW, it can help border crossing and customs agencies determi
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	Chart
	Span
	0
	0
	0


	500,000
	500,000
	500,000


	1,000,000
	1,000,000
	1,000,000


	1,500,000
	1,500,000
	1,500,000


	2,000,000
	2,000,000
	2,000,000


	2,500,000
	2,500,000
	2,500,000


	3,000,000
	3,000,000
	3,000,000


	2009
	2009
	2009


	2010
	2010
	2010


	2011
	2011
	2011


	2012
	2012
	2012


	2013
	2013
	2013


	Traffic Volume (vehicles)
	Traffic Volume (vehicles)
	Traffic Volume (vehicles)


	Year
	Year
	Year


	Span
	Passenger Vehicles
	Passenger Vehicles
	Passenger Vehicles


	Span
	Commercial Vehicles
	Commercial Vehicles
	Commercial Vehicles


	Span

	Figure 1
	Figure 1
	Figure 1

	b Yearly traffic volume through Peace Bridge to Canada 

	Figure 1. Yearly traffic volume of Peace Bridge from 2009 to 2013 
	The TBBW app was designed to collect, share and estimate border crossing waiting time by taking advantage of multiple data sources and advanced traffic prediction methods. 
	The TBBW app was designed to collect, share and estimate border crossing waiting time by taking advantage of multiple data sources and advanced traffic prediction methods. 
	Figure 2
	Figure 2

	 summarizes the characteristics of TBBW (shown in the green color), in comparison with the existing border crossing delay dissemination method (shown in the blue color). As can be seen, TBBW provides several options for border crossing delay estimates including, user-reported or “crowd-sourcing” wait time, historical, and future wait time, in addition to the current waiting time reported by the authorities. Travelers and border management authorities can then make better decisions based on this information.
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	Figure 2. Comparison of TBBW with the Other Ways to Share Border Waiting Time 
	 
	DATASETS 
	Two types of data are used to develop the TBBW app. The first dataset contains the hourly traffic volume data collected at the Peace Bridge since 2003. This is used as the input to develop the stepwise border delay prediction model and to predict the future waiting times. The second 
	dataset captures the current waiting times collected and maintained by the border crossing authorities. Such data are used as one source of the current waiting times provided by the app. In addition, they are stored for historical data analysis and also used as the ground truth to assess the performance of the border delay prediction model. All data are available for download from the websites maintained by the Peace Bridge authority and Niagara Falls Bridge Commission (Peace Bridge, 2014; Niagara Falls Bri
	 
	INNOVATIVE FEATURES  
	The TBBW app was developed on the Android platform, the most popular mobile operating system used in the U.S. TBBW is available from the Google Play store. The developed TBBW app is innovative in terms of its ability: (1) to share current waiting time; (2) to store and analyze historical waiting time; and (3) to predict future waiting time, as described below.  
	 
	Sharing Current Waiting Time Function 
	The app employs two ways to collect current waiting time information. The first way involves downloading the waiting time data from the websites maintained by the Buffalo and Fort Erie Public Bridge Authority and the Niagara Falls Bridge Commission. At the time of the study, the current waiting time for Peace Bridge and Lewiston Queen Bridge were provided and updated every five minutes, and for Rainbow Bridge, it was updated every one hour. The information is collected and uploaded in real time to the app a
	The app employs two ways to collect current waiting time information. The first way involves downloading the waiting time data from the websites maintained by the Buffalo and Fort Erie Public Bridge Authority and the Niagara Falls Bridge Commission. At the time of the study, the current waiting time for Peace Bridge and Lewiston Queen Bridge were provided and updated every five minutes, and for Rainbow Bridge, it was updated every one hour. The information is collected and uploaded in real time to the app a
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	Figure 3. Three ways to share current waiting time 
	 
	Because the official current waiting time data is lagged (particularly for the Rainbow Bridge where it is only updated every hour), the app also provides a second way to collect the current waiting time data utilizing crowd sourcing ideas. Specifically, users are allowed to report their experienced border crossing delays that can be then processed and broadcasted to other users for their benefits, called crowd sourcing. The same concept has been widely applied in other traffic information sharing apps, such
	Because the official current waiting time data is lagged (particularly for the Rainbow Bridge where it is only updated every hour), the app also provides a second way to collect the current waiting time data utilizing crowd sourcing ideas. Specifically, users are allowed to report their experienced border crossing delays that can be then processed and broadcasted to other users for their benefits, called crowd sourcing. The same concept has been widely applied in other traffic information sharing apps, such
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	b. They can also choose to automatically share their waiting times through their GPS-enabled smartphones as shown in 
	 
	 


	Figure 3
	Figure 3
	c. This option is necessary because if users are driving, it is unsafe and illegal to manually input waiting time. 

	 
	Utilizing Historical Waiting Time Function  
	Mining and analyzing historical border crossing waiting time data in a proper manner can provide additional insight to travelers. In TBBW, three types of graphs and charts are created based on an underlying historical waiting time database.  
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	a) Average Waiting Times for Each Day of Week for Each Bridge 
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	c) Waiting Times Sharing History by the registered user himself/herself 
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	Figure 4. Three ways to utilize historical waiting time 
	As can be seen in 
	As can be seen in 
	Figure 4
	Figure 4

	a, for each bridge, the average waiting times for each day of week are calculated and shown in one chart. This is the long term trend based on the historical data of the past month. The TBBW app also allows the users to compare the waiting times of the three bridges, based on the historical data of the past one hour, as shown in 
	Figure 4
	Figure 4

	b. Finally, because users may want to make decisions based on their own previous experiences, registered users can view their waiting times as another reference as shown in 
	Figure 4
	Figure 4

	c.  

	 
	Predicting Future Waiting Time Function  
	Finally, in addition to current and historical analyses of wait times, the app is designed to predict the likely waiting time in the next 15 minutes (this estimate is also updated every 5 minutes). Predicting is based on utilizing the stepwise border crossing delay prediction model previously developed by the authors in prior research (Lin et al., 2012; Lin et al., 2013; Lin et al, 2014a). The following section will briefly describe this model and its prediction performance. 
	 
	Stepwise Delay Prediction Model: The stepwise border delay prediction model is composed of two sequential modules as shown in 
	Stepwise Delay Prediction Model: The stepwise border delay prediction model is composed of two sequential modules as shown in 
	Figure 5
	Figure 5

	 below. The first module is designed to predict the traffic volume arriving at the border crossings for each time period (Lin et al, 2012; Lin et al, 2013; Lin et al., 2014a). Note that the economic indicators and weather and incident shown information in 
	Figure 5
	Figure 5

	 were not used in the current version of the short term traffic volume prediction model; we hope to address this in our future research). Given the predicted traffic volume as input, the second model estimates the corresponding waiting time by solving a transient multi-server queueing problem (Lin et al, 2014b). 

	 
	 
	Figure
	Figure 5. Framework of the stepwise delay prediction model 
	 
	Border Crossing Traffic Volume Prediction Module: Three short-term traffic volume prediction methods have been previously tested by the authors on the border crossing traffic volume data for the Peace Bridge, namely seasonal Autoregressive Integrated Moving Average (SARIMA), support vector regression (SVR), and an enhanced spinning network (SPN) (Lin et al., 2012; Lin et al., 2013; Lin et al., 2014a). In this app, SARIMA is chosen as the prediction method because of its easiness of implementation and its mo
	 
	Transient Multi-server Queueing Module: In the authors’ previous work, 700 observations of vehicular inter-arrival times and 571 observations of the service times (i.e. inspection time) were 
	collected from December 19, 2011 to January 10, 2012 at the Peace Bridge. Based on the collected observations, it was determined that the distribution of the inter-arrival times is best captured by an exponential distribution and that the service time distribution is best described as an Erlang distribution with order equal to 2 (Lin et al., 2014b). With these findings, an 𝑀/𝐸𝑘=2/𝑛 queueing model was developed to capture the queueing process at the border crossing. The transient solution of this multi-s
	 
	Because the TBBW app requires that the predicted wait time be updated every five minutes, the predicted hourly traffic volume was split into a finer resolution (e.g., a five-minute resolution) before they were used for border wait time prediction by the queueing models. With the inter-arrival distribution known, this was done using the inverse cumulative function of the inter-arrival exponential distribution 𝐹(𝑥)=1−𝑒−𝜆𝑥, where λ is the predicted hourly volume or arrival rate.  
	 
	Other input requirements of the queueing model included the number of inspection booths.  However, the number of open inspection stations is typically not available ahead of time. To solve the problem, our approach at the moment involves running the queueing model for different numbers of open stations (1 to 10 in this study), and trying to estimate how many stations are actually open. Other venues to be explored in the near future are information offered by users or directly by the U.S. Customs and Border 
	 
	Prediction Results: The TBBW interface of the predicted waiting time for passenger vehicles from Canada to U.S. through the Peace Bridge is shown in 
	Prediction Results: The TBBW interface of the predicted waiting time for passenger vehicles from Canada to U.S. through the Peace Bridge is shown in 
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	Figure
	Figure 6. Predicted border crossing waiting time 
	 
	In order to test the prediction performance of the stepwise delay prediction model, the research compared the predicted waiting times with the historical waiting times recorded by the border 
	authorities from 7:00 AM to 9:00 PM for each day of the whole month of May, 2014. Because the future waiting time is updated every five minutes, there should be a total of 5,580 predicted values for the month. However, because of several missing data points from the field observations (e.g., when the server was down and the official waiting time was recorded as “N/A”), a total of 3,103 observations were deemed valid for assessing the prediction model’s performance.  
	 
	The mean absolute difference (minutes) between the predicted waiting times and the officially recorded waiting times is shown in 
	The mean absolute difference (minutes) between the predicted waiting times and the officially recorded waiting times is shown in 
	Table 1
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	. As can be seen, the mean absolute difference for the whole dataset is 9.22 minutes. After checking the officially recorded waiting times, we find that there were a total of 2,363 data points where the wait times was recorded as being equal to 0 minutes, and the remaining 740 points had delays greater than or equal to 10 minutes.  After discussions with the border crossing authorities, it was revealed that their practice was to report any wait time which was less than 10 minutes as 0 minutes delay.  Given 
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	For a more disaggregate view of the performance of the delay prediction model, the predicted waiting times and the historical waiting times for the peak hours 18:00-20:00 on April 22, 2014 are compared and shown on 
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	. As can be seen in 
	Figure 7
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	, the mean absolute difference between the predicted waiting times and the observations is about 6.6 minutes. Most of the time, the difference is within 10 minutes, except for 19:40 for which the difference is around 20 minutes. This is most probably the result of the opening of additional inspection stations at that time without the model being aware of that (the reader may recall that there is currently no easy way for the app to discern the actual number of inspection stations open; it is hoped that in t
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	Front-End Service Processes of Toronto Buffalo Border Wait Time (TBBW) app 
	Figure 8
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	 shows the details of the TBBW front-end service processes behind the innovative functions described above.  
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	Figure 8. Flow Chart of TBBW Front-End Service Processes 
	 
	As can be seen, there is a local computer which continuously runs the web crawler program to download the current waiting times from the official border crossing authority websites.  That computer also continuously runs the step-wise border crossing waiting time for 24 hours per day. The current and predicted waiting times are then uploaded to the remote database which is hosted by GoDaddy (GoDaddy, 2014), an internet domain registrar and web hosting company . Unlike the local computer, this remote server c
	 
	 

	RISKS AND CHANLLENGES 
	This section will summarize the risks and challenges encountered while developing the app.  Some of those challenges have been addressed, while others are left for future work.  
	 
	The Need for More Data 
	A critical piece of information for wait time prediction which is missing at this point is the number of open lanes or inspection booths.  Although the delay prediction model can estimate the number of open lanes, it would be better and more accurate if the real value were to be provided by the U.S. Customs and Border Protection agencies.  
	 
	Crowd Sourcing 
	As with any contribution-based crowd sourcing information system, a risk exists of low motivation to participate and of abuse (Steinfeld et al., 2011). To overcome this problem for TBBW, one can design a set of reward and penalty rules on the basis of the registration and login function. For example, when users share their border crossing waiting time with others, they can get some virtual points, and every period of time the user with the highest rank may be rewarded. Abuse can also be prevented through pe
	   
	GPS Location  
	Some privacy concerns may arise regarding the ability to share waiting time in an automatic fashion through the GPS location sharing function.  To address this, the TBBW app was designed so that it does not store any of the users’ GPS locations data; these data are only used to calculate the distances of the travelers from the borders and their speed, so an approximate waiting time can be estimated. 
	 
	CONCLUSIONS AND FUTURE WORK 
	This part of the study introduced an android app TBBW which combines sophisticated transportation models with emerging mobile computing technologies to solve the wait time border crossing problem.  The performance of the prediction model was assessed by comparing its predictions to those reported by the authorities for month of May, 2014.  The comparison demonstrated that the predictions are quite accurate, with a mean absolute difference of only 6. 95 minutes for delays greater than or equal to 10 minutes.
	 
	Several future directions are suggested by the current work. First, at the moment, the TBBW app is only predicting the delay for the next 15 minutes, it would be better to make the prediction horizon a user-specified value.  Second, although the app is currently designed for the Niagara International Frontier Borders, it can also be easily extended and applied to other US-Canadian or US-Mexico borders. The app can even be extended to predict airport delay, and delay at many other similar queueing systems, i
	  
	 
	A HYBRID MACHINE LEARNING MODEL FOR INTERVAL PREDICTION OF SHORT-TERM BORDER CROSSING TRAFFIC VOLUME 
	PREDICTION INTERVAL VERSUS SINGLE-VALUE PREDICTION 
	Most previous studies on short-term traffic volume prediction have focused on a single-value prediction of the traffic volume, and relied almost exclusively on the prediction error when assessing the effectiveness of a modeling approach (Karlaftis and Vlahogianni, 2011). Given the nonlinearity of traffic flow, traditional single-value prediction approaches are unfortunately almost guaranteed to result in high prediction errors, which could have significant negative impact on the effectiveness of traffic man
	 
	For forecasting applications in various domains, the use of PIs is quite useful because PIs try to capture the uncertainty associated with predicting the next observation, by asserting that the next observation will be contained within a given interval with a given probability.  PIs are particularly useful in operational contexts where it is desired to make staffing plans. Jongbloed and Koole (2001) showed that point prediction of the call volume to a call center cannot guarantee the desired service quality
	 
	Similarly, Kortbeek et al. (2015) introduced PIs to develop flexible staffing policies that would allow hospitals to dynamically respond to their fluctuating patient population by employing float nurses. PIs also have applications in the energy industry, especially in regard to wind-generated electricity. For example, owing to the variability of wind production, PIs can be used to construct contracts for supply in an auction market (Pinson et al., 2007). Within the transportation domain, PIs have been used 
	 
	From a technical standpoint, PIs can be derived in a number of ways, but with significant difference in terms of interpretation. The first approach is a frequentist approach, which assumes that the observation is itself fixed but the interval itself is random and related to the sample dataset (Cryer and Chan, 2008). A PI with a probability of 95% asserts that were the experiment to be conducted many times, about 95% of those would contain the unknown observation. Autoregressive–moving-average (ARMA) model i
	distribution, estimated from a prior distribution and from previous observations. The Kalman Filter family of models is the classical example for the Bayesian approach.    
	Among the key challenges of generating PIs is how to quantify the variance. The assumption of constant variance, e.g. ARMA model, compromises the forecasting ability (Zhang et al., 2014). One might reasonably expect variances to vary along with a mean in a time series, especially in short-term traffic flow data. Zhang et al. (2014) pointed out that the variance of traffic flow becomes large during an accident, congestion, or other abnormal situations that last for a certain period. This is known as time-dep
	 
	Zhang et al. (2014) further pointed out that the GARCH model ignores the empirically important asymmetric effect in traffic data. Instead, they applied the Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) proposed by Glosten et al. (1993), to allow the conditional variance to respond differently to the past negative and positive innovations. A hybrid model was proposed by the researchers to provide point predictions as well as PIs: spectral analysis for periodic trend, ARIMA for deterministic part and GJR-GARCH
	 
	In this part of the study, in this paper, we apply and improve a hybrid machine learning model called PSO-ELM for interval prediction of short-term traffic volume. Extreme learning machine (ELM) is a novel feedforward neural network with advantages such as, extremely fast learning speed and superior generalization capability (Huang et al., 2006). Furthermore, particle swarm optimization (PSO), a well-known heuristic and population based optimization method, is applied to adjust the parameters of ELM in an e
	 
	The PSO-ELM model has been applied to wind power prediction (Wan et al., 2014). Based on the characteristics of the short-term traffic prediction problem, in this study, we improve on the PSO-ELM previously used by Wan et al. (2014), by making the parameters update in an on-line approach, and also by redefining the calculation of reliability.  We then compare the improved PSO-ELM model against: (1) the original PSO-ELM of Wan et al (2014); and (2) the hybrid model by Zhang et al. (2014). The comparison is m
	  
	Furthermore, another main contribution of our study is that we propose a comprehensive optimization framework to make staffing level plans for border crossing authorities, based on the interval predictions and point predictions of short-term traffic volume. Although there have been a few studies that looked at the optimal staffing level problem for border crossings (Yu et al., 2016; Lin et al., 2014b), none of them considered future traffic predictions in developing the border staffing level plans. Combinin
	 
	Experiments are then designed and repeated so that the border crossing port is operated under different optimal staffing plans with real observed traffic demand from the morning period from 7:00-12:00 from two typical days; (1) a holiday (President’s Day, 02/17/2014); and (2) a normal weekday (02/10/2014). The hourly average waiting times and the total system costs (operation cost and traveler waiting cost) are recorded and compared. As we will be elaborated on later in the report, our results show that dur
	 
	The rest of this section of the report is organized as follows. The next sub-section provides a detailed introduction of the PSO-ELM model, the multi-objective optimization function utilized and the improvements this study introduced to the original PSO-ELM. This is followed by a description of the dataset used. The results of the interval prediction using the improved PSO-ELM are then presented and compared against the original PSO-ELM and the Zhang et al. (2014) model. Following this, the PIs and point pr
	 
	METHODOLOGY  
	Prediction interval 
	A Prediction Interval (PI) provides a lower bound and an upper bound for the future target value 𝑦𝑖 given an input 𝑋𝑖. The probability that the future targets can be enclosed by the PIs is called the Prediction Interval Nominal Confidence (PINC): 
	 𝑃𝐼𝑁𝐶=100(1−𝛼)% 
	Equation 1 
	where,  
	the usual value of 𝛼 could be 0.01, 0.05 or 0.10. 
	Obviously, the selection of 𝛼 in PINC will impact the PIs. The PIs under different PINC levels can then be represented as follows: 
	 
	 𝐼𝑖𝛼=[𝐿𝑖𝛼,𝑈𝑖𝛼]  
	Equation 2 
	where,  
	𝐿𝑖𝛼 and 𝑈𝑖𝛼 denote the PI lower and upper bounds of target value 𝑦𝑖 given 𝛼 . 
	PI evaluation criteria 
	The reliability and sharpness metrics are introduced in the PSO-ELM (Wan et al.,2014) to evaluate the PIs. The normalized values of these metrics are useful in the minimization of the multi-objective function, as will be discussed later. 
	 
	Reliability: Reliability is regarded as a major property for validating PI models. Based on the PI definition, the future targets 𝑦𝑖 are expected to be covered by the constructed PIs with a probability equal to the PINC 100(1−𝛼)%. However, the actual PI Coverage Probability (PICP) may be different from the pre-defined PINC, calculated for the dataset, as follows: 
	 
	 𝑃𝐼𝐶𝑃=1𝑁∑𝐷𝑖𝛼𝑁𝑖=1 
	Equation 3 
	where,  
	𝑁is the dataset size; 
	𝐷𝑖𝛼 is a dummy variable equal to 1, if the real observation 𝑦𝑖 is within the PI 𝐼𝑖𝛼, otherwise, 𝐷𝑖𝛼=0. 
	 
	The PSO-ELM model tries to force the calculated PICP to be as close as possible to PINC. The absolute average coverage error (AACE) is applied as the reliability evaluation criterion as shown in 
	The PSO-ELM model tries to force the calculated PICP to be as close as possible to PINC. The absolute average coverage error (AACE) is applied as the reliability evaluation criterion as shown in 
	Equation 4
	Equation 4

	 .  

	 
	 𝑅𝛼=𝑎𝑏𝑠(𝑃𝐼𝐶𝑃−𝑃𝐼𝑁𝐶)                                                                     
	Equation 4 
	Naturally, the smaller the 𝑅𝛼, the higher the reliability.  
	 
	Sharpness: Reliability considers only coverage probability. If reliability were to be utilized as the only model evaluation criterion, high reliability could be easily achieved by increasing the width of the PI, rendering the PI useless in practice (since a wide PIs may not provide accurate quantifications of uncertainties involved in the real-world processes (Wan et al., 2014; Zhang et al., 2014)). A sound PI model should be able to provide reliable, as well as sharp intervals. Sharpness thus should be con
	 
	Suppose the width of PI 𝐼𝑖𝛼 is represented by 𝑊𝐼𝑖𝛼.  The width measures the distance between the upper bound and lower bound through 
	 
	 𝑊𝐼𝑖𝛼=𝑈𝑖𝛼−𝐿𝑖𝛼                                  
	Equation 5 
	The sharpness of PI 𝐼𝑖𝛼 , denoted by 𝑆𝑖𝛼, can thus be calculated as 
	 𝑆𝑖𝛼={𝑤1𝛼𝑊𝐼𝑖𝛼+𝑤2[𝐿𝑖𝛼−𝑡𝑖],   𝑖𝑓 𝑦𝑖<𝐿𝑖𝛼    𝑤1𝛼𝑊𝐼𝑖𝛼,                             𝑖𝑓 𝑦𝑖 𝜖 𝐼𝑖𝛼     𝑤1𝛼𝑊𝐼𝑖𝛼+𝑤2[𝑡𝑖−𝑈𝑖𝛼],𝑖𝑓 𝑦𝑖>𝑈𝑖𝛼                                        
	Equation 6 
	where,  
	𝑤1 and 𝑤2 are two user defined weights. 
	 
	Equation 6
	Equation 6
	Equation 6

	 considers the width of the PI 𝑊𝐼𝑖𝛼 weighted by 𝑤1 for all three different scenarios. Additionally, when the true value 𝑦𝑖 is lower than the lower bound, or higher than the upper bound, an extra penalty calculated by the distance of that point to the bound and adjusted by 𝑤2  is included. This is to prevent the possibility that the PIs become too “narrow”. In practical applications, the 𝑤1 and 𝑤2 need to be carefully tuned. 

	 
	The sharpness of PIs over the entire dataset can be calculated by taking the average of the normalized 𝑆𝑖𝛼, represented by 𝑆𝑖,𝑛𝑜𝑟𝑚𝛼, using 
	The sharpness of PIs over the entire dataset can be calculated by taking the average of the normalized 𝑆𝑖𝛼, represented by 𝑆𝑖,𝑛𝑜𝑟𝑚𝛼, using 
	Equation 7
	Equation 7

	and 
	Equation 8
	Equation 8

	: 

	 𝑆𝛼 =1𝑁∑𝑆𝑖,𝑛𝑜𝑟𝑚𝛼𝑁𝑖=1                                   
	Equation 7 
	where, 
	 𝑆𝑖,𝑛𝑜𝑟𝑚𝛼=𝑆𝑖𝛼−min (𝑆𝑖𝛼)max(𝑆𝑖𝛼)−min (𝑆𝑖𝛼)                              
	Equation 8 
	Hybrid PSO-ELM model 
	 
	Extreme Learning Machine: ELM is a single hidden-layer feedforward neural network proposed by Huang et al. (2006). It has become very popular in recent years. Previous studies have shown that ELM training is extremely fast because of the simple matrix computation, and can always guarantee optimal performance (Huang et al., 2006; Wan et al., 2014). In addition, ELM can overcome many limitations of traditional gradient based NNs training algorithms, such as finding local minima, overtraining and so on. The ba
	 
	Given a short-term traffic volume dataset, suppose the traffic volume at time step 𝑖 is 𝑥𝑖, using the traffic volumes from the previous time steps, we can construct a feature vector 𝑋𝑖=[𝑥𝑖−𝑛+1,…,𝑥𝑖−1,𝑥𝑖] and the corresponding target value 𝑦𝑖, e.g. it could be the traffic volume in the next time step. Finally, suppose we have a dataset with 𝑁 distinct samples {(𝑋𝑖,𝑦𝑖)}𝑖=1𝑁, where the inputs 𝑋𝑖∈𝑅𝑛 and the targets 𝑦𝑖∈𝑅𝑚, the following equation can be used to find the optimal struct
	 
	 𝑓𝐾(𝑋𝑖)=∑𝛽𝑗𝜑(𝑎𝑗∗𝑋𝑖+𝑏𝑗)=𝑦𝑖𝐾𝑗=1,𝑖=1,…,𝑁    
	Equation 9 
	where, 
	𝐾 is the number of hidden neurons; 
	𝜑(.) is the activation function (e.g. a sigmoid function); 
	𝑎𝑗=[𝑎𝑗1,𝑎𝑗2,…,𝑎𝑗𝑛]𝑇 represents the weight vector connecting the 𝑗th hidden neuron and the input neurons;  
	𝑏𝑗 denotes the bias of the 𝑗th hidden neuron; 
	𝜑(𝑎𝑗∗𝑋𝑖+𝑏𝑗) is the output of the 𝑗th hidden neuron with respect to the input 𝑋𝑖;  
	𝛽𝑗=[𝛽𝑗1,𝛽𝑗2,…,𝛽𝑗𝑚]𝑇 represents the weights at the links connecting the 𝑗th hidden neuron with the 𝑚 output neurons.  
	 
	For simplicity, 
	For simplicity, 
	Equation 9
	Equation 9

	 can be represented as: 

	 
	 𝐻𝛽=𝑌           
	Equation 10 
	 
	where, 
	 𝐻=[𝜑(𝑎1∗𝑋1+𝑏1)⋯𝜑(𝑎𝐾∗𝑋1+𝑏𝐾)⋮⋱⋮𝜑(𝑎1∗𝑋𝑁+𝑏1)⋯𝜑(𝑎𝐾∗𝑋𝐾+𝑏𝐾)]𝑁×𝐾     
	Equation 11 
	 
	Each row of 𝐻 is the outputs at the 𝐾 hidden neurons for input 𝑋𝑖, 𝑖=1,…,𝑁. 𝛽 is the matrix of weights at the links connecting hidden layer and output layer and 𝑌 is the matrix of targets, respectively represented as 
	 
	 𝛽=[𝛽1⋮𝛽𝐾]𝐾×𝑚           
	Equation 12 
	 𝑌=[𝑦1⋮𝑦𝑁]𝑁×𝑚           
	Equation 13 
	 
	Note that in ELM, the weights 𝑎𝑗 and biases 𝑏𝑗 for the 𝐾 hidden neurons are randomly chosen, and are not tuned during the training process. This is very different compared to the traditional gradient-based training algorithm of NNs. In this way, ELM can dramatically save the learning time. The training of ELM is simply to find 𝛽∗ to minimize the objective function, 
	 
	 ‖𝐇(𝑎1∗,…,𝑎𝑘∗,𝑏1∗,…,𝑏𝑘∗)𝛽∗−𝑇‖=min𝛽‖𝐇(𝑎1,…,𝑎𝑘,𝑏1,…,𝑏𝑘)𝛽−𝑌‖    
	Equation 14 
	where, 
	‖.‖ is the function to calculate the Euclidean distance. 
	 
	Finally, a unique solution of 𝛽∗ can be derived through a matrix calculation: 
	 𝛽∗=𝐻†𝑌           
	Equation 15 
	where, 
	𝐻† is the Moore-Penrose generalized inverse of the hidden layer output matrix 𝐻, which can be derived through the singular value decomposition (SVD) method. 
	It is worth mentioning that to apply the ELM model for interval prediction, the target value 𝑦𝑖 in the training dataset {(𝑋𝑖,𝑦𝑖)}𝑖=1𝑁 needs to be replaced with a pair of target bounds 𝑦̂𝑖−and 𝑦̂𝑖+, which can be produced by slightly increasing or decreasing the original 𝑦𝑖 by ±𝜌%,0<𝜌<100. So after transformation, the training dataset for interval prediction using ELM should be {(𝑋𝑖,𝑦̂𝑖−,𝑦̂𝑖+)}𝑖=1𝑁. Then by adjusting the number of output neurons, the ELM can directly generate the lower
	It is worth mentioning that to apply the ELM model for interval prediction, the target value 𝑦𝑖 in the training dataset {(𝑋𝑖,𝑦𝑖)}𝑖=1𝑁 needs to be replaced with a pair of target bounds 𝑦̂𝑖−and 𝑦̂𝑖+, which can be produced by slightly increasing or decreasing the original 𝑦𝑖 by ±𝜌%,0<𝜌<100. So after transformation, the training dataset for interval prediction using ELM should be {(𝑋𝑖,𝑦̂𝑖−,𝑦̂𝑖+)}𝑖=1𝑁. Then by adjusting the number of output neurons, the ELM can directly generate the lower
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	Figure 9. A structure of ELM model for interval prediction. 
	 
	Multi-objective function and Particle Swarm Optimization: In this study, the Particle Swarm Optimization (PSO) algorithm was used to further adjust the parameters of ELM, by minimizing a multi-objective optimization function which considers both reliability and sharpness of PIs. Specifically, a multi-objective optimization function was constructed to achieve the trade-off between those two important criteria. Recall that in ELM, the weights 𝛽 at the links connecting the hidden layer and output layer are th
	Multi-objective function and Particle Swarm Optimization: In this study, the Particle Swarm Optimization (PSO) algorithm was used to further adjust the parameters of ELM, by minimizing a multi-objective optimization function which considers both reliability and sharpness of PIs. Specifically, a multi-objective optimization function was constructed to achieve the trade-off between those two important criteria. Recall that in ELM, the weights 𝛽 at the links connecting the hidden layer and output layer are th
	Equation 15
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	 above. However, the weights 𝛽 can be further tuned through PSO, in order to minimize the following multi-objective function 𝐹. 

	   𝐹𝛽  𝑚𝑖𝑛=𝛾𝑅𝛼+𝜆𝑆𝛼         
	Equation 16 
	where, 
	𝑅𝛼 denotes the reliability as calculated by 
	𝑅𝛼 denotes the reliability as calculated by 
	Equation 4
	Equation 4

	 

	𝑆𝛼 denotes sharpness as calculated by 
	𝑆𝛼 denotes sharpness as calculated by 
	Equation 7
	Equation 7

	. 

	𝛾 and 𝜆 are trade-off weights for the reliability and sharpness metrics defined by the user. 
	 
	Some researchers have pointed out that reliability is the primary feature reflecting the correctness of the PIs, and hence should be given priority (Wan et al., 2014). 
	 
	PSO is a population based heuristic optimization inspired by the social behavior of bird flocking or fish schooling (Kennedy, 2011). It is an extremely simple but efficient algorithm with fast convergence speed for optimizing a wide range of functions. In this study, it is applied to further 
	adjust the weights 𝛽 of ELM model in order to minimize the multi-object function in 
	adjust the weights 𝛽 of ELM model in order to minimize the multi-object function in 
	Equation 16
	Equation 16

	. A brief introduction of PSO is given next. 

	Suppose the total population of particles in the 𝑆-dimensional search space is 𝑁𝑃, the position of the 𝑖𝑡ℎ particle can be represented with a vector 𝑃𝑖=[𝑃𝑖1,𝑃𝑖2,…,𝑃𝑖𝑆]𝑇. Once the algorithm starts learning, each particle moves around in the space with a speed 𝑣𝑖. The algorithm keeps running until the user defined number of iterations 𝑁𝑖𝑡𝑒𝑟 or a sufficiently good fitness has been reached (e.g., change of object values from two continuous runs is less than a user-defined threshold). For e
	 
	 𝑣𝑖=𝑤𝑣𝑖+𝑐1𝑟1(𝑃𝑖𝑏−𝑃𝑖)+𝑐2𝑟2(𝑃𝑔𝑏−𝑃𝑖) 
	Equation 17 
	 𝑃𝑖=𝑃𝑖+𝜙𝑣𝑖            
	Equation 18 
	 
	for 𝑖=1,2,…,𝑁𝑃. 
	where, 
	𝑤 is the inertia weight; 
	𝑐1, 𝑐2, 𝜙 are user-defined constants; 
	𝑟1 and 𝑟2 are random numbers within [0,1]; 
	𝑃𝑖𝑏 is the best position for the particle 𝑖 that generated the smallest objective function value from the previous iterations; 
	𝑃𝑔𝑏 is the best position among particles in the global swarm that produced the smallest objective function value from the previous iterations. 
	 
	Note that the velocity of the 𝑖𝑡ℎ particle for the next iteration is a function of three components: the current velocity, the distance between its own previous best position 𝑃𝑖𝑏 and the current position, and the distance between the global best position 𝑃𝑔𝑏 and its current position. The initialized positions of the particles are generated randomly, based on the weights 𝛽∗ using 
	Note that the velocity of the 𝑖𝑡ℎ particle for the next iteration is a function of three components: the current velocity, the distance between its own previous best position 𝑃𝑖𝑏 and the current position, and the distance between the global best position 𝑃𝑔𝑏 and its current position. The initialized positions of the particles are generated randomly, based on the weights 𝛽∗ using 
	Equation 15
	Equation 15

	 , and the speed of the particles are randomly produced with an interval [−𝑣𝑚𝑎𝑥,𝑣𝑚𝑎𝑥], 𝑣𝑚𝑎𝑥 is a 𝑆-dimensional vector. For each iteration, the updated position of each particle will be taken as the adjusted weights 𝛽. The corresponding value from 
	Equation 16
	Equation 16

	 will be used to decide the 𝑃𝑖𝑏 and 𝑃𝑔𝑏. After the algorithm stops, the 𝑃𝑔𝑏 will be the finalized weights 𝛽 for ELM model. The flow chart in 
	The flow chart of PSO-ELM algorithm for interval prediction.
	The flow chart of PSO-ELM algorithm for interval prediction.

	 
	Figure 10
	Figure 10

	 shows the complete learning process of the hybrid PSO-ELM algorithm for interval prediction. 
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	Figure 10. The flow chart of PSO-ELM algorithm for interval prediction. 
	 
	As shown in 
	As shown in 
	Figure 10
	Figure 10

	, given a dataset {(𝑋𝑖,𝑦̂𝑖−,𝑦̂𝑖+)}𝑖=1𝑁, ELM algorithm can be applied first to get an optimal 𝛽∗ using Equation (15). After generating the initial positions of particles on the 

	basis of 𝛽∗, PSO algorithm aims to find the global best position 𝑃𝑔𝑏 that can minimize the multi-objective function in 
	basis of 𝛽∗, PSO algorithm aims to find the global best position 𝑃𝑔𝑏 that can minimize the multi-objective function in 
	Equation 16
	Equation 16

	. PSO algorithm continues until the maximum number of iterations is reached or until the change in the value of the multi-objective function from one iteration to the next is less than a predefined threshold. The final global best position 𝑃𝑔𝑏 is then taken as the values of 𝛽 to be used by ELM to make interval predictions.  

	 
	Improved PSO-ELM 
	In this study, we improved the original PSO-ELM by making the following two refinements for short-term traffic volume prediction task. First, instead of learning the PSO-ELM model parameters based on the training dataset and then keeping them unchanged, the PSO-ELM model can be regularly updated in an on-line approach. Every period of time 𝑙, we use the newly archived traffic volume data to adjust the model parameters. For example, when the hourly traffic volumes of the next day are available, they are imp
	 
	The second improvement is related to the PI evaluation criteria. As pointed out by Zhang et al. (2014), the lack of definite agreement on the indices of PI assessment creates a relatively new research challenge in traffic forecasting. Zhang et al. (2014) applied the PICP and the mean PI length (MPIL) which is the average distance between the upper bounds and lower bounds of the intervals to evaluate the PIs. Guo et al. (2014) proposed kickoff percentage and width to flow ratio. The kickoff percentage is the
	 
	In the original PSO-ELM model, the reliability 
	In the original PSO-ELM model, the reliability 
	Equation 4
	Equation 4

	 and the multi-objective optimization 
	Equation 16
	Equation 16

	 encourage the PICP to be as close as possible to PINC. However, it will be much better if the PSO-ELM model can generate a PICP higher than PINC, and at the same time it can also keep the PIs as narrow as possible. Therefore, we change the way of quantifying the reliability of interval prediction by simply revising 
	Equation 4
	Equation 4

	 as follows and apply it to 
	Equation 16
	Equation 16

	.  

	 
	 𝑅𝛼=𝑃𝐼𝑁𝐶−𝑃𝐼𝐶𝑃         
	Equation 19 
	Therefore to minimize the objective value in  
	Therefore to minimize the objective value in  
	Equation 16
	Equation 16

	, the PSO will find a set of parameters for ELM to make PICP as high as possible and also to keep the PIs narrow.  

	 
	Benchmark models 
	 
	To assess the performance of the PSO-ELM model and the improvement we made, the PSO-ELM models are compared against the hybrid model by Zhang et al. (2014). This section will briefly introduce the hybrid model by Zhang et al. (2014).  For further details, the reader is referred to Lin et al., 2018.  
	 
	Hybrid Model by Zhang et al. (2014): Zhang et al. (2014) decomposed the traffic data into three components: a periodic trend, a deterministic component and a volatility component. In the hybrid model they proposed, spectral analysis and ARMA model were applied to capture the first 
	two components. What makes their model unique, however, is the volatility component where they assume that the white noise 𝑒𝑡 is conditionally heteroscedastic instead of constant,  
	 𝑒𝑡=𝑧𝑡√ℎ𝑡 
	Equation 20 
	where,  
	{𝑧𝑡} is a sequence of i.i.d. random variables with zero mean and unit variance.  The conditional distribution of 𝑒𝑡 is also assumed to be i.i.d. with zero mean and a variance of ℎ𝑡. 
	 
	In the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, ℎ𝑡 is calculated as follows: 
	 
	ℎ𝑡=𝑎0+∑𝛽𝑖ℎ𝑡−𝑖𝑝𝑖=1+∑𝛼𝑗𝑒𝑡−𝑗2𝑞𝑗=1                                                                                    
	Equation 21 
	which shows that the conditional variance is a linear combination of the lagged condition variance and past model sample variances.  
	 
	Zhang et al. (2014) pointed out that GARCH model can capture the phenomenon observed in traffic datasets in which a large past value of sample variance tends to be followed by another large sample variance. However, it ignores the asymmetric effect in transportation system that travelers may response differently to sudden decrease or increase in travel time. To address this, the researchers applied the Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model to capture the asymmetric volatility effect: 
	 
	ℎ𝑡=𝑎0+∑𝛽𝑖ℎ𝑡−𝑖𝑝𝑖=1+∑(𝛼𝑗𝑒𝑡−𝑗2+𝛾𝑗𝑒𝑡−𝑗2𝐼𝑡−𝑗)𝑞𝑗=1   
	Equation 22 
	where,  
	𝐼𝑡−𝑗={1  𝑖𝑓 𝑒𝑡−𝑗<00  𝑖𝑓 𝑒𝑡−𝑗≥0                                                                                                              
	Equation 23 
	MODELING DATASET  
	For this study, we considered a part of the hourly passenger car traffic volume dataset collected at the Peace Bridge, focusing on traffic entering the US from Canada. The size of the dataset is 900 observations, collected between 7:00 to 21:00 from January 1st to March 1st in 2014. The first 600 data points (01/01/2014-02/09/2014) are used to train the models (i.e., the training dataset), while the rest (02/10/2014-03/01/2014) are used to test the models.  
	 
	Note that in this part of the study, our objective is to test and compare the interval prediction performances for different models, therefore a smaller dataset is much easier for use to explore the reasons behind why some of the predicted points were outside of PIs. For example, because the time period of the dataset falls within the inclement winter season in the area of the study, we could check the historical snow precipitation records for the points outside of PIs. Furthermore, the season of popular sp
	2014, which also falls within the time period considered for this period, allows us to explore other possible reasons for predictions lying outside PIs.  
	 
	 
	MODEL DEVELOPMENT AND RESULTS 
	Model development 
	First, the original, off-line PSO-ELM model was implemented in Matlab. There are quite a few hyper-parameters to tune in a PSO-ELM model. These include: (a) the multi-objective function parameters; (b) the ELM parameters; and (c) the PSO parameters. For the multi-objective function related parameters, target values in the training dataset were slightly increased and decreased by 5% in order to construct the target bounds {(𝑦̂𝑖−,𝑦̂𝑖+)}𝑖=1𝑁 (based on our experiments, this value doesn’t have too much imp
	 
	As mentioned earlier, for the weights 𝑤1 and 𝑤2 in the sharpness calculation in 
	As mentioned earlier, for the weights 𝑤1 and 𝑤2 in the sharpness calculation in 
	Equation 6
	Equation 6

	, the optimal values need to be tuned carefully for different PINC levels.  When the PINC was set to 90%, the weights 𝑤1 and 𝑤2 were set to 6 and 0.1, respectively.  When he PINC was 95%, 11 and 0.1 were used, and when PINC was 99%, 12 and 0.1 were chosen. In general, we found that larger values of 𝑤1 generated a narrower interval, and larger 𝑤2 made the intervals wider. Because 𝛼 in 
	Equation 6
	Equation 6

	 decreased from 0.10 to 0.01 when PINC changed from 90% to 99%, we needed to increase 𝑤1 in order to keep the predicted interval tight. Finally, for the multi-objective function 
	Equation 16
	Equation 16

	, the weights of reliability and sharpness 𝛾 and 𝜆 were both set to 1 for all three PINC levels.  This means that in our study, both criteria are regarded as equally important. 

	  
	For the ELM part, recall that the weights 𝑎𝑗 and biases 𝑏𝑗 for the 𝐾 hidden neurons are randomly chosen, and are not tuned during the training process; instead, the weights 𝛽∗ at the links connecting the hidden layer and output layer are calculated using 
	For the ELM part, recall that the weights 𝑎𝑗 and biases 𝑏𝑗 for the 𝐾 hidden neurons are randomly chosen, and are not tuned during the training process; instead, the weights 𝛽∗ at the links connecting the hidden layer and output layer are calculated using 
	Equation 15
	Equation 15

	. The values of the only two parameters that could be calibrated or tuned, namely the number of neurons of the input layer and hidden layer, were determined through a grid search of possible combinations. Sets {12, 14, 16, 18} and {14, 16, 18, 20} were separately tried for the input and hidden layers, resulting in a total of 16 possible combinations. For each combination, the ELM model was run 1000 times based on the training dataset {(𝑋𝑖,𝑦̂𝑖−,𝑦̂𝑖+)}𝑖=1𝑁. When the lowest multi-objective function val
	Table 2
	Table 2

	. 

	 
	As shown in 
	As shown in 
	Table 2
	Table 2

	, the values of the lowest multi-objective function do not appear to be very sensitive to varying the numbers of the input and hidden neurons. Nevertheless, as can be seen from the table, the optimal ELM architecture consisted of 14 neurons for the input layer, 20 neurons for the hidden layer.   

	  
	Table 2. Experimental Results of ELMs for Three PINC Levels (90%, 95% and 99%) 
	Table
	TBody
	TR
	Span
	(Input Neuron Number, Hidden Neuron Number) 
	(Input Neuron Number, Hidden Neuron Number) 

	Lowest Multi-objective Function Value 
	Lowest Multi-objective Function Value 


	TR
	PINC (90%) 
	PINC (90%) 

	PINC (95%) 
	PINC (95%) 

	PINC (99%) 
	PINC (99%) 


	TR
	Span
	(12, 14) 
	(12, 14) 

	0.74 
	0.74 

	0.87 
	0.87 

	0.82 
	0.82 


	(12, 16) 
	(12, 16) 
	(12, 16) 

	0.75 
	0.75 

	0.89 
	0.89 

	0.66 
	0.66 


	(12, 18) 
	(12, 18) 
	(12, 18) 

	0.78 
	0.78 

	0.84 
	0.84 

	0.80 
	0.80 


	(12, 20) 
	(12, 20) 
	(12, 20) 

	0.73 
	0.73 

	0.88 
	0.88 

	0.75 
	0.75 


	(14, 14) 
	(14, 14) 
	(14, 14) 

	0.78 
	0.78 

	0.86 
	0.86 

	0.76 
	0.76 


	(14, 16) 
	(14, 16) 
	(14, 16) 

	0.79 
	0.79 

	0.82 
	0.82 

	0.73 
	0.73 


	(14, 18) 
	(14, 18) 
	(14, 18) 

	0.77 
	0.77 

	0.81 
	0.81 

	0.66 
	0.66 


	(14, 20) 
	(14, 20) 
	(14, 20) 

	0.73 
	0.73 

	0.79 
	0.79 

	0.66 
	0.66 


	(16, 14) 
	(16, 14) 
	(16, 14) 

	0.75 
	0.75 

	0.85 
	0.85 

	0.71 
	0.71 


	(16, 16) 
	(16, 16) 
	(16, 16) 

	0.79 
	0.79 

	0.86 
	0.86 

	0.68 
	0.68 


	(16, 18) 
	(16, 18) 
	(16, 18) 

	0.75 
	0.75 

	0.85 
	0.85 

	0.67 
	0.67 


	(16, 20) 
	(16, 20) 
	(16, 20) 

	0.78 
	0.78 

	0.87 
	0.87 

	0.72 
	0.72 


	(18, 14) 
	(18, 14) 
	(18, 14) 

	0.84 
	0.84 

	0.87 
	0.87 

	0.73 
	0.73 


	(18, 16) 
	(18, 16) 
	(18, 16) 

	0.81 
	0.81 

	0.83 
	0.83 

	0.75 
	0.75 


	(18, 18) 
	(18, 18) 
	(18, 18) 

	0.82 
	0.82 

	0.85 
	0.85 

	0.73 
	0.73 


	TR
	Span
	(18, 20) 
	(18, 20) 

	0.85 
	0.85 

	0.82 
	0.82 

	0.74 
	0.74 




	 
	For the PSO part, the population number 𝑁𝑃 was set to 50, the iteration times 𝑁𝑖𝑡𝑒𝑟 to 150, and 𝑤, 𝑐1 and 𝑐2 in 
	For the PSO part, the population number 𝑁𝑃 was set to 50, the iteration times 𝑁𝑖𝑡𝑒𝑟 to 150, and 𝑤, 𝑐1 and 𝑐2 in 
	Equation 17
	Equation 17

	 were set to 0.9, 1 and 1, respectively. The optimal value for 𝜙 in 
	Equation 18
	Equation 18

	 was 0.5, and the maximum particle speed 𝑣𝑚𝑎𝑥 was 2.  
	Figure 11
	Figure 11

	 shows the values of the objective function, and the reliability and sharpness metrics as a function of the number of iterations during the training of PSO-ELM model, with PINC equal to 95%. As can be seen, the three curves converged quite early at the 60th iteration. 

	 
	The objective function value decreased from 0.79 to 0.21the absolute average coverage error (AACE), the measure of reliability dropped from 0.506 to 0.037 with a clear declining trend (recall lower values of AACE indicated higher reliability or accuracy), and the sharpness curve fluctuated up and down but stabilized at around 0.17 level finally. The changes of the curves show that PSO can improve ELM to minimize the multi-objective function value. 
	 
	 
	 
	Figure
	Figure 11. Optimization curves in PSO-ELM algorithm with 95% PINC (a. change of object value; b. change of reliability; c. change of sharpness). 
	 
	For the improved PSO-ELM models under different PINC levels, as mentioned earlier, we replaced the calculation of reliability with 
	For the improved PSO-ELM models under different PINC levels, as mentioned earlier, we replaced the calculation of reliability with 
	Equation 19
	Equation 19

	, and updated the parameters of the models every 15 points in this study. With 300 observations in testing dataset, each model was updated 20 times. The tuning of each model shared a similar process to that of the off-line PSO-ELM model.  

	 
	For the hybrid model of Zhang et al. (2014), spectral analysis was conducted using R package’s TSA, the periodogram reached local maximum at time index 3, 4, 6, 40, 80 and 120. 
	For the hybrid model of Zhang et al. (2014), spectral analysis was conducted using R package’s TSA, the periodogram reached local maximum at time index 3, 4, 6, 40, 80 and 120. 
	Equation 24
	Equation 24

	 lists the estimated parameters for the cyclic regression model.  

	 
	𝑦𝑡=255.42+14.01𝑠𝑖𝑛(2∗𝑝𝑖∗3∗𝑡600)+22.20𝑐𝑜𝑛(2∗𝑝𝑖∗3∗𝑡600)+18.59𝑠𝑖𝑛(2∗𝑝𝑖∗4∗𝑡600)+27.01𝑐𝑜𝑛(2∗𝑝𝑖∗4∗𝑡600)−19.69𝑠𝑖𝑛(2∗𝑝𝑖∗6∗𝑡600)−61.48𝑐𝑜𝑛(2∗𝑝𝑖∗6∗𝑡600)+56.36𝑠𝑖𝑛(2∗𝑝𝑖∗40∗𝑡600)−49.80𝑐𝑜𝑛(2∗𝑝𝑖∗40∗𝑡600)+43.31𝑠𝑖𝑛(2∗𝑝𝑖∗80∗
	𝑡600)−16.53𝑐𝑜𝑛(2∗𝑝𝑖∗80∗𝑡600)+18.92𝑠𝑖𝑛(2∗𝑝𝑖∗120∗𝑡600)+20.93𝑐𝑜𝑛(2∗𝑝𝑖∗120∗𝑡600)                                                                                                                                      
	Equation 24 
	 
	Figure 12
	Figure 12
	Figure 12

	 shows the original border crossing traffic flow, the estimated trend using Equation (48), and the residual part. 

	 
	Figure
	Figure 12. Decomposition of border crossing traffic flow. 
	 
	Model results 
	In this sub-section, we compare the performance of the improved PSO-ELM, the original PSO-ELM, and the hybrid model by Zhang et al. (2014), for the three PINC levels 90%, 95% and 99%, . To compare the PIs of these models, for each model, we calculated the PICP metric introduced previously, which calculates the ratio of the 300 observations in the testing dataset falling within the PIs, and the MPIL metric which measures the average distance between the upper bounds and lower bounds of the intervals as descr
	 
	A number of observations could be made regarding the results of the comparison.  First, because the original PSO-ELM model aims to minimize the multi-objective function by making PICP as close as PINC, model’s PICPs were found to be exactly equal to the specified PINCs for all the levels (i.e., the PICP for an PINC level of 90% was found to be exactly equal to 90%). Also because the original PSO-ELM models were not updated when the new data arrives, the MPILs of the PSO-ELM models were found to be higher th
	ELM model provided higher PICP than the specified PINC level (for example, the PICP of the improved PSO-ELM model was 94% when the specified PINC was 90%). If we specifically focus on the performance of the improved PSO-ELM model developed in this study, one can see that the improved PSO-ELM had the smallest MPIL among all three models for the three specified PINC levels, and its PICP was higher indicating superior performance. 
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	Figure 13. PIs of PSO-ELM by PINC levels (a. PINC = 90%; b. PINC = 95%; c. PINC = 99%). 
	 
	Figure 13
	Figure 13
	Figure 13

	 shows the 300 real observations from the testing dataset and the prediction intervals of the original PSO-ELMs under the three PINC levels. The real observations are marked as red 

	when they fell outside of PIs, green when they fell within top half of PIs, and yellow within the bottom half of PIs. As can be seen, first, moving from the top figure of 
	when they fell outside of PIs, green when they fell within top half of PIs, and yellow within the bottom half of PIs. As can be seen, first, moving from the top figure of 
	Figure 13
	Figure 13

	, to say the ones below it, when the PINC level increases from 90% to 99%, the prediction intervals become correspondingly wider and thus naturally fewer observations fall outside the prediction intervals; specifically, there were 29, 15 and 2 points (marked in red) that fell outside PIs the PINC levels of 90%, 95% and 99%, respectively. For example, the point marked with the black circle fell outside of the prediction interval under 90% PINC, but within the PIs under the 95% and 99% levels. Similarly, the 
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	Figure 14. PIs of Improved PSO-ELM by PINC levels (a. PINC = 90%; b. PINC = 95%; c. PINC = 99%). 
	 
	In the same way, the PIs of improved PSO-ELM models by PINC levels and the 300 data points are shown in 
	In the same way, the PIs of improved PSO-ELM models by PINC levels and the 300 data points are shown in 
	Figure 14
	Figure 14

	. If we compare the PIs with those under the same PINC level in 
	Figure 13
	Figure 13

	, we can notice immediately that they are much narrower. Meanwhile there are fewer points outside of PIs under the same PINC. The same point circled with black is already within the interval when it is 90% PINC, and the orange-marked point is covered by the interval when it is 95% PINC. 
	Figure 13
	Figure 13

	 and 
	Figure 14
	Figure 14

	 thus demonstrate the superior performance of the improved PSO-ELM model proposed herein.  

	 
	MODEL APPLICATION FOR OPTIMAL STAFFING LEVEL PLAN DEVELOPMENT 
	In this section, we propose a comprehensive optimization framework to make staffing level plan recommendations for border crossing authorities, based on future traffic volume predictions from the different models described above (this includes the use of both PI bounds and point predictions from the Zhang et al. model). We then compare these different staffing levels plans in terms of average waiting times and total system cost.   
	 
	Optimal staffing plan development framework 
	In our previous research, we proposed a generic queueing model with a Batch Markovian Arrival Process (BMAP) and Phase Types (PH) services for border crossing delay calculation (Lin et al., 2014b). The transient solution of the BMAP/PH/n queueing model was obtained using heuristic methods. We then compared the queueing models’ estimates to the results from a detailed microscopic traffic simulation model of the Peace Bridge border crossing, and showed that the transient multi-server queueing model, along wit
	 
	In that study, we also incorporated the queueing model within an optimization framework to help inform border crossing management strategies. The optimization model is shown below. 
	 
	𝐶𝑖𝐵𝑖𝑚𝑖𝑛=𝐶𝑜𝑝𝑒∗𝐵𝑖+𝐶𝑤∗𝑉𝑖+𝐶𝑝𝑢𝑛         
	Equation 25 
	 
	s.t.  
	 𝑉𝑖∗μ𝐵𝑖≤𝑇ℎ𝑤, 
	 𝐵𝑚𝑖𝑛≤𝐵𝑖≤𝐵𝑚𝑎𝑥, 
	where, 
	𝐶𝑖 is the total cost of the queueing system during hour i; 
	𝐶𝑜𝑝𝑒 is the cost per hour to operate one booth; 
	𝐶𝑤 is the hourly cost of waiting time per vehicle; 
	𝐵𝑖 is the number of open booths during hour 𝑖; 
	𝑉𝑖 is the average number of waiting vehicles during hour i, which can be calculated based on the transient BMAP/PH/n queueing model; 
	μ is the average service time (seconds); 
	𝐶𝑝𝑢𝑛 is the penalty cost for changing the number of open booths from one hour to the next, calculated as follows  𝐶𝑝𝑢𝑛=𝑐∗|𝐵𝑖−𝐵𝑖−1|, where 𝑐 is the penalty for switching for one booth; 
	𝑉𝑖∗μ𝐵𝑖≤𝑇ℎ𝑤 is the constraint that ensures that the average waiting time is less than a threshold value, 𝑇ℎ𝑤; 
	𝐵𝑚𝑖𝑛≤𝐵𝑖≤𝐵𝑚𝑎𝑥 is the constraint for the number of available booths. 
	 
	The goal of the optimization is to minimize the total system cost of the queueing system for a given hour 𝑖, including the cost for both the travelers as well as the operating agency. While doing that, the problem strives to keep the expected waiting time below a certain threshold.  The total cost consists of three elements.  The first element is the operating cost of opening the inspection stations, calculated by multiplying the assumed hourly cost of operating one booth by the number of booths or inspect
	 
	Our previous study didn’t try to make the optimal staffing plans based on the future traffic predictions. With the BMAP/PH/n queueing model and the optimization function, we are capable of developing optimal staffing plans for border crossing authority based on a series of different types of short-term traffic predictions, such as the PI upper or lower bounds or point predictions. We can then evaluate different optimal staffing plans in terms of waiting times and total system cost. The optimal staffing plan
	 
	Step 1: At the beginning of hour i, check how many vehicles are waiting in the queue 𝑉𝑖−1 and record the number of open booths 𝐵𝑖−1. These are necessary inputs to the queueing model and the optimization model. Based on the next hour traffic prediction (PI upper or lower bound or point prediction), calculate the optimal number of open booths 𝐵𝑖 as the staffing plan for hour i using the 
	Step 1: At the beginning of hour i, check how many vehicles are waiting in the queue 𝑉𝑖−1 and record the number of open booths 𝐵𝑖−1. These are necessary inputs to the queueing model and the optimization model. Based on the next hour traffic prediction (PI upper or lower bound or point prediction), calculate the optimal number of open booths 𝐵𝑖 as the staffing plan for hour i using the 
	Equation 25
	Equation 25

	 

	 
	Step 2: With the optimal number of open lanes determined, use the real traffic demand for the hour i as the input of the BMAP/PH/n queueing model (Lin et al., 2014b), run the multi-server queueing model. This is to simulate the real world scenario if the border crossing authority followed the optimal staffing plan based on the short-term traffic prediction. 
	 
	Step 3: At the end of hour i, record the system cost 𝐶𝑖 and average waiting times 𝑉𝑖∗μ𝐵𝑖 based on the queueing model. Record the number of waiting vehicles in the queue 𝑉𝑖 and the number of open booths 𝐵𝑖. 
	 
	Step 4: keep running Step 1 to Step 3 until the scheduled operational period ends.  
	 
	In this study, the parameters in are set as follows. For the hourly operating cost of one booth (Cope), a value of $150 was assumed.  For the monetary value of one hour of wait time (Cw), it was estimated to be around $25. The penalty for switching one booth (𝑐) from closed to open (or vice versa) was set as $20. Given that the maximum number of inspection stations that can be opened at the Peace Bridge is 10, which meant that 𝐵𝑚𝑖𝑛=1 and 𝐵𝑚𝑎𝑥=10. Average service time μ was set as 44.58 seconds (bas
	 
	Optimal staffing plan comparison 
	The optimal plan development framework allows us to calculate and compare hourly average waiting times and total system costs for the operational period for various types of predictions such as the upper bounds or lower bounds of PIs (in this part, we focus on the PIs from improved PSO-ELM and from Zhang et al. (2014) model. The experiments also tested the point predictions from Zhang et al. (2014) to verify if PIs could result in better staffing plans.  
	 
	For the operational periods, we picked two representative morning periods to compare the performances of different predictions. One is 7:00-12:00 on 02/10/2014, a normal Monday, and the other one is 7:00-12:00 on 02/17/2014, President’s Day. In the Tables to follow, we differentiate the predictions of diverse models by integrating the model name and the PINC level, with “U” for upper bound or “L” for lower bound. For example, “Im_PSO-ELM_90L” means the predictions are from the lower bounds of the improved P
	 
	Note that as the warming-up stage of the queuing model and the staffing plan development process, the results for the first hour (i.e., 7:00-8:00) are not included in the analysis. Fig. 9. shows the average waiting times for 8:00-12:00 based on six sets of upper or lower bound predictions when PINC level is 90% and two types of point predictions. The shaded area formed by the corresponding upper and lower bounds is the average waiting times interval.  
	 
	The following table, 
	The following table, 
	Table 3
	Table 3

	, further summarizes the total system costs for various sets of staffing level plans from the different predictions from 8:00 to 12:00 on Monday, 02/10/2014. First for the normal weekday morning hours, the staffing plans developed utilizing point predictions, perform better than the PI bound plans with the total system costs around $3,000. Second, although implementing the staffing plans from upper bounds can keep the average waiting times all zero, the total system costs are a little higher than the plans 

	 
	Table 3. Total System Cost from 8:00 to 12:00 on Monday (02/10/2014) 
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	In contrast, 
	In contrast, 
	Table 4
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	 shows the total system costs for different plans from 8:00 to 12:00 on President’s Day in 2014. We notice that the total system costs become much higher for plans based on point predictions, about $12,000 comparing with the previous $3,000 in 
	Table 3
	Table 3

	. 

	Again, this is mainly the result of the underestimation of high traffic demand on this holiday and the huge waiting time costs from the travelers. The poor performances of the plans from lower bounds are because of the same reason. However, note that the plans using predictions from “Im_PSO-ELM_90L” generate a cost of $13,437, which is very close to the costs from the point predictions with only $1,000 more in additional expense. Again this shows the plans from PI lower bounds of the improved PSO-ELM could 
	 
	More importantly, 
	More importantly, 
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	 shows that in this case, to keep the border crossing traffic from Canada to US moving smoothly, we’d better implement the staffing plans based on the PI upper bounds. Although the operation costs are higher, travelers spend much less time waiting at the border (Fig. 10). Therefore, the total system cost can be controlled down to as low as around $5,500. When using upper bounds, and no matter which PINC level is chosen, the total system costs based on the upper bounds of improved PSO-ELMs are always less th

	 
	Table 4. Total System Cost from 8:00 to 12:00 on President’s Day (02/17/2014) 
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	In addition to picking the two specific time periods for detailed analysis (i.e., a normal Monday and President’s Day), the study also calculated the average waiting times and average costs for the entire testing data set consisting of 300 hours. The overall 
	performances of the staffing plans, developed based upon the different models investigated in this study, are summarized in 
	performances of the staffing plans, developed based upon the different models investigated in this study, are summarized in 
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	. The observations from the average waiting times shown in 
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	 show that: (1) the staffing plans derived from using PI upper bounds result in almost zero waiting times; (2) for the staffing level plans developed based upon the PI lower bounds, the one from “Im_PSO-ELM_90L” performs the best. This may be attributed to the fact that most days in the testing dataset are normal days. For 
	Table 6
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	, the average costs of plans derived from PI upper bounds, are lower than the other types of plans.  For the lower bound plans, the plan from “Im_PSO-ELM_90L” perform the best with average cost $1,570. Once again, the results show that when a border crossing authority is short of staff, plans derived from using the improved PSO-ELM lower bounds can result in lower average waiting times and costs.  
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	CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 
	This part of the study introduced and applied a hybrid machine learning model called PSO-ELM for interval prediction of short-term traffic volume. The study refined the original PSO-ELM model, to allow it to run in an on-line fashion, and redefined the reliability criterion. The paper compared the performances of the PSO-ELM models against two other models, the original PSO-ELM model and the Zhang et al. (2014) model.   The models were developed utilizing an hourly traffic data set for traffic crossing the 
	equal to 100% for all cases, and that for the improved PSO-ELM had a PICP higher than or equal to the model. For MPIL, the improved PSO-ELM yielded the smallest value for all specified PINC it is the smallest for the improved PSO-ELM for any PINC level, followed by Zhang et al. (2014); the original PSO-ELM had a relatively high MPIL. Therefore, in general, only the PIs from the improved PSO-ELM models were found to be reliable and sharp. Furthermore, the quantitative multi-objective function allows the impr
	 
	The study then constructed a comprehensive staffing plan development framework to minimize total system cost for border crossing based on the upper bounds or lower bounds of the PIs, or point predictions. Experiments were conducted for the time period 7:00 to 12:00 on two typical days, one is a normal Monday, and the other one is President’s Day. We found that for the holiday time period, the plan from PI upper bounds of the improved PSO-ELM reduced the hourly average waiting times the most, to be around fi
	 
	In both the holiday and normal Monday scenarios, for the lower bound plans, the ones from the improved PSO-ELMs performed the best, with their average waiting times being much less than the PI lower bound plans from the Zhang et al. (2014) model, and even turning out to be less than or close to the point prediction plans. The average waiting times and costs with different staffing plans for the whole testing dataset are also calculated and compared. Similar findings are observed. In general, for the case wh
	 
	For future research, we provide the following suggestions: 
	 
	1. To enhance the accuracy of the interval prediction models, future research should consider including additional variables to capture the effect of inclement weather and special events (those could be discovered from mining social media data). As a further refinement, the on-line PSO-ELM can be updated more frequently, e.g. once per hour instead of every 15 hours in this study. Future research could also explore how to adjust the weights of reliability and sharpness in the multi-objective function dynamic
	  
	2. In this study, we make optimal plans purely based on either upper bounds or lower bounds of PIs. It may be of interest to interchangeably use upper and lower bounds. The simplest approach would be to use upper bounds for peak-hours, and lower bounds for non-peak hours. More sensitivity analysis need to be done in the future on parameters such as the waiting time cost per hour, the operation cost per hour, the waiting time threshold and the number of available staffs/open booths. The environmental polluti
	 
	3. Third, the whole methodology can be tested on additional application scenarios such as tolling stations, subway and/or airport security checking points. It would also be interesting to test the methodology on additional datasets with finer granularity. 
	 
	4. Finally, although this paper only focused on the traffic volume interval prediction at a single point, the PSO-ELM models described herein can easily be extended to the traffic state estimation problem for a whole road network with the adjustment of the number of neurons in the output layer.  
	  
	DEEP-LEARNING MODELS FOR BORDER CROSSING DELAY PREDICTION 
	In this part of the study, we leverage a unique data set that has only been recently available which records the border crossing delay based on data collected from Bluetooth readers recently installed at the Niagara Frontier border crossings.  With this unique data set, the study developed models that directly predict the future border crossing delay based on delay recorded in the previous time steps.  The models are developed using deep learning methods, which have attracted a lot of attention within the r
	 
	DEEP LEARNING AND ITS APPLICATION IN TRANSPORTATION 
	A Deep learning technique is a type of Machine learning/Artificial intelligence (AI) approach (Goodfellow, Bengio, & Courville, 2016), which utilizes deep artificial neural networks for learning (Skansi, 2018). Deep learning is a method for training models through various levels of abstraction (Alpaydin, 2016). 
	A Deep learning technique is a type of Machine learning/Artificial intelligence (AI) approach (Goodfellow, Bengio, & Courville, 2016), which utilizes deep artificial neural networks for learning (Skansi, 2018). Deep learning is a method for training models through various levels of abstraction (Alpaydin, 2016). 
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	 shows the relationship between AI, machine learning and deep learning. 
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	Figure 15. Relationship between AI, Machine Learning, and Deep L earning 
	(Goodfellow et al., 2016) 
	 
	To understand deep learning, it might be necessary to understand some concepts like Neural Networks (NN) and Machine Learning (ML). A neuron is a simple processing unit and the network of these neurons and the connections between them is called an (NN) (Alpaydin, 2016). ML refers to the capability of the systems to gain their own knowledge by extracting patterns 
	from the raw data (Goodfellow et al., 2016). Supervised and unsupervised learning algorithms are two broad categories of machine learning algorithms (Goodfellow et al., 2016). Learning which utilizes a dataset where both the input and output are provided are supervised learning algorithms, while those which have to learn the properties of the structure from the dataset provided to them are called unsupervised learning algorithms (Goodfellow et al., 2016). Generally, a ML algorithm involves some hyper-parame
	 
	Goodfellow et. al. (2016) mention that deep learning has a long history which can be traced back to the 1940s, and that it has mainly experienced three waves of development and was known by different names each time; these include the first wave from the 1940s to 1960s, the second wave from 1980s to 1990s and the third wave from 2006 (Goodfellow et al., 2016). Deep learning was known as cybernetics and connectionism during the first and second wave respectively (Goodfellow et al., 2016). Neuroscience is con
	  
	The usefulness of deep learning has increased with a greater amount of training data available and it has been able to solve progressively more complicated applications more accurately with time (Goodfellow et al., 2016). As per Khan et. al. (2018), the advantages of deep learning include the simplicity in generating large networks of deep learning and their easy scalability to huge datasets. Deep learning has been applied to various fields like robotics, natural language processing, search engines, online 
	 
	Multilayer Perceptron (MLP) 
	Multilayer Perceptron (MLP) is one of most well-known of the deep learning techniques. It is made of three components, namely the input layer, hidden layer, and an output layer (Pal & Prakash, 2017). Each layer contains several numbers of neurons or nodes (Gardner & Dorling, 1998). As explained by Gardener and Dorling (Gardner & Dorling, 1998), MLPs consists of a system of neurons interconnected by weights (w). MLPs are fully connected when each neuron is connected to every other neuron in the previous and 
	Multilayer Perceptron (MLP) is one of most well-known of the deep learning techniques. It is made of three components, namely the input layer, hidden layer, and an output layer (Pal & Prakash, 2017). Each layer contains several numbers of neurons or nodes (Gardner & Dorling, 1998). As explained by Gardener and Dorling (Gardner & Dorling, 1998), MLPs consists of a system of neurons interconnected by weights (w). MLPs are fully connected when each neuron is connected to every other neuron in the previous and 
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	 shows an illustration of MLP. 

	 
	Training of MLPs is a process of determining the individual weights such that the relationship that has to be modeled is accurately resolved (Gardner & Dorling, 1998). Gradient Descent is a technique that is used by the backpropagation training algorithm to train the MLPs (Gardner & Dorling, 1998) 
	 
	Figure
	Figure 16. MLP with two hidden layers (Gardner & Dorling, 1998) 
	 
	Pal and Prakash (Pal & Prakash, 2017) have described in detail the training process of MLP models. They have explained that the input features are fed from the input layer into the hidden layers, where each neuron applies a linear transformation and a non-linear activation to the input features. They demonstrated that the output (gi) from each of these neurons is:  
	 
	gi = h (wix + bi) 
	Equation 26 
	 
	where wi and bi are the weights and bias of the linear transformation respectively and h is an activation function. They have pointed out that MLPs can model the non-linear relationship between the regressors and target variable with the help of non-linear activation function (Pal & Prakash, 2017). As per Skansi (Skansi, 2018), the most common activation function is sigmoid or logistic function, which outputs σ(z) equal to 1/(1+e-z), where z (also called logit) is the sum of the product of inputs to the neu
	 
	As explained by Pal and Prakash (Pal & Prakash, 2017), the output from the neurons of one hidden layer are fed as an input into the next hidden layer, where again transformations of the inputs take place and the outputs are fed into the next layer and this procedure goes on till the last hidden layer feeds the output layer. The process of transformation of the input layer to prediction is known as the forward pass (Pal & Prakash, 2017). They have further explained that after the forward pass is completed, l
	 
	Next, the backpropagation algorithm is applied to compute the partial derivatives of loss with respect to the weights (∂E/∂w) in the backward direction, i.e. beginning from the output layer 
	and going up to the input layer, this is known as backward pass (Pal & Prakash, 2017). Finally, the weights of connections between each neuron, which were randomly initiated are now updated based on the learning rate and the results obtained from the backward pass (Pal & Prakash, 2017). As stated by Skansi (Skansi, 2018), the weights updated by the equation: 
	 
	winew = wiold + (-1) ŋ ∂E/∂ wiold 
	Equation 27 
	where winew is the new updated weight, wiold is the old weight and ŋ is the learning rate 
	 
	As explained by Gardener and Dorling (Gardner & Dorling, 1998), thousands of training iterations might be required for obtaining a MLP model with an acceptable level of error but the training should be stopped when the performance of the model reaches maximum on the independent test set. The weights are updated after each iteration (Pal & Prakash, 2017). The number of times the iterative weight update is repeated is called epochs (Pal & Prakash, 2017). Through the iterative process of the forward and backwa
	As the direction of information processing in MLP is from the input layer to the output layer, they are called feed-forward neural networks (Gardner & Dorling, 1998). 
	 
	Convolutional Neural Network (CNN) 
	Convolutional Neural Network or CNN is another deep learning method. Aghdam and Heravi (Aghdam & Heravi, 2017) have pointed out that applying a fully connected feedforward network on an image will result in a huge number of neurons, which makes them impractical for usage and therefore, the basic idea behind CNNs is to build a deep network with few numbers of parameters. The two types of convolutional layers in CNNs are 1 D convolutional layers or temporal convolutional layer, and 2 D convolutional layers or
	 
	Aghdam and Heravi (Aghdam & Heravi, 2017) have stated that a CNN generally comprises of several convolution-pooling layers that are followed by fully connected layers. 
	Aghdam and Heravi (Aghdam & Heravi, 2017) have stated that a CNN generally comprises of several convolution-pooling layers that are followed by fully connected layers. 
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	Figure 17
	Figure 17

	 shows a diagrammatic representation of CNN. The convolutional layers usually contain multiple filters, which moves over the entire image, this movement is called convolution (Pal & Prakash, 2017). As per Khan et.al. (Khan et al., 2018), each filter is a grid of discrete numbers, which are also called the weight of the filter. They have further stated that the number of steps of the filter along the horizontal or vertical direction is called stride of the convolutional filter. They have demonstrated the con

	 
	Figure 18
	Figure 18
	Figure 18

	 shows the convolution operation of a 2 X 2 filter with a 4 X 4 input feature map to produce a 3 X 3 output feature map (Khan et al., 2018). Pal and Prakash (Pal & Prakash, 2017) have explained that the summation of the product of weights of the filter and the corresponding pixel values of the image plus a bias (optional) is the final feature from a local patch which results into a value of output feature map. Aghdam and Heravi (Aghdam & Heravi, 2017) have explained the weight sharing property of CNNs due t

	 
	 
	Figure
	 
	Figure 17: A typical CNN applied to a 2 D image (Skansi, 2018) 
	 
	 
	Figure
	Figure 18. Stepwise operation of the convolutional layer with 2 X 2 filter and stride = 1 (Khan et al., 2018) 
	 
	Khan et. al. (Khan et al., 2018) have pointed out that the spatial size of the output feature map obtained after convolution may be smaller than the input feature map. To avoid that, zero padding may be applied, which means increasing the size of input feature map each direction by padding zeroes so as to output feature map with desired size.  
	 
	As per Khan et. al. (Khan et al., 2018), the dimensions of the output feature map ( h’ X w’) from convolution operation is given by 
	 
	h’ = {h – f – (d – 1)(f – 1) + s + 2p}/s 
	Equation 28 
	w’ = {w – f – (d – 1)(f – 1) + s + 2p}/s 
	Equation 29 
	 
	where, h X w is the size of input feature map, filter in the convolutional layer has size f x f, d is dilation factor, s is stride and p is the increase in input feature map in each dimension due to zero padding.  
	 
	The convolutional layers and fully connected layers in a CNN are generally followed by a non-linear activation function which enables the network to learn nonlinear mappings (Khan et al., 2018). As stated by Pal and Prakash (Pal & Prakash, 2017), rectified linear units (ReLu) is the popular choice for activation function, which is given by: 
	 
	ReLu(z)  = 0, if z < 0 
	= z, if z > 0 
	Equation 30 
	 
	Before the output from the convolutional layers is fed to dense layers, they may be passed through pooling layer (Pal & Prakash, 2017). The purpose of pooling layer is down sampling, which means to decrease the dimensionality of the feature map (Aghdam & Heravi, 2017). The pooling layers conduct combination operations on the blocks of the input feature map, which is defined by a pooling function like max or average pooling (Khan et al., 2018). A window of a pre-specified size and stride is moved across inpu
	 
	h’ = |_(h – f + s)/s_| 
	 
	w’ = |_(w – f + s)/s_| 
	Equation 31 
	 
	where, the size of the input feature map is h X w, size of pooling region is f X f, the stride is s, and |_∙_| represents floor operation. 
	 
	As per Khan et. al. (Khan et al., 2018), fully connected layers are generally added near the end of the architecture in a typical CNN and their operation can be represented by: 
	 
	y = f (WTx + b) 
	Equation 32 
	 
	where y is the vector of output activations and x is the vector of input activation, W is the matrix of weights of the connections between the layer units, b is bias and f (∙) is a nonlinear function. 
	Khan et. al (Khan et al., 2018) have explained that during the training process of CNN, the parameters of CNN are optimized such that the loss function is minimized. These parameters are the tunable weights in the layers of CNN (Khan et al., 2018). They have further explained that gradient based methods are used for the iterative search of the locally optimal solution at each step and to update the parameters in the direction of steepest descent (Khan et al., 2018). As the information is pushed forward, CNN
	 
	Skansi (Skansi, 2018) has suggested that the CNNs are easier to train because they require less number of parameters. He also pointed out that due to the shared set of weights in CNN, the problem of vanishing gradient is avoided as the same weights get updated each time even if just slightly. Additionally, the process involved in CNNs is computationally fast and can be split across many processors, which is due to the fact that training of each feature map can be done in a parallel fashion (Skansi, 2018).  
	 
	Recurrent Neural Network (RNN) 
	Networks that have feedback loops in which some connections feed the output back into a layer as input are known as Recurrent Neural Networks or RNNs (Skansi, 2018).  The diagrammatic representation of a simple RNN architecture is shown in 
	Networks that have feedback loops in which some connections feed the output back into a layer as input are known as Recurrent Neural Networks or RNNs (Skansi, 2018).  The diagrammatic representation of a simple RNN architecture is shown in 
	Figure 19
	Figure 19

	, where the circles with x, y, and h denotes input, output, and hidden nodes, while the squares with Whi, Woh, and Whh are matrices representing the input, output, and hidden weights respectively, and the polygon denotes nonlinear transformation (Bianchi et al., 2017). 

	 
	 
	Figure
	Figure 19: A simple RNN architecture (Bianchi et al., 2017) 
	 
	The procedure of representing RNN as an infinite, acyclic and directed graph is known as unfolding (Bianchi et al., 2017). It comprises of replicating the hidden layer structure of the network for each time step (Bianchi et al., 2017). 
	The procedure of representing RNN as an infinite, acyclic and directed graph is known as unfolding (Bianchi et al., 2017). It comprises of replicating the hidden layer structure of the network for each time step (Bianchi et al., 2017). 
	Figure 20
	Figure 20

	 shows the unfolded RNN. As explained by Bianchi et. al. (Bianchi et al., 2017), unlike the standard feedforward neural networks, the weight matrices of unfolded RNNs are constrained to assume the same values in all replicas of the layer. They have stated that due to this transformation, a direct relation between network weights and the loss function can be found and hence, the network can be trained with a standard learning algorithm. 

	 
	 
	 
	Figure
	Figure 20: RNN unfolded to feedforward neural network (Bianchi et al., 2017) 
	 
	As explained by Bianchi et. al. (Bianchi et al., 2017), the training procedure of RNN may be based on backpropagation through time (BTT) for propagation and distribution of prediction error to the previous states of the network. BTT is a special case of the backpropagation algorithm (Pal & Prakash, 2017). Usually, the training of neural networks involves using a gradient descent algorithm for updating its parameters so as to minimize the loss function (Bianchi et al., 2017).  
	 
	Pal and Prakash (Pal & Prakash, 2017) have described the process to calculate BTT. The loss (L) or error between the predicted and target variable is found through forward pass and then the partial derivative of loss with respect to the network weights (∂L/∂W) is computed while going in the backward direction, i.e. from the loss to the weight (Pal & Prakash, 2017). However, there can be several paths connecting the loss to the weight as RNN has a sequential structure (Pal & Prakash, 2017). Therefore, the pa
	of gradient may be fractional and in long-range timesteps, the product of these terms might reduce the gradient to zero or to a negligibly low value, which does not allow the weights to update (Pal & Prakash, 2017). This problem is called the vanishing gradient problem (Pal & Prakash, 2017). The different types of recurrent neural network architecture - Elman Recurrent Neural Network (ELNN), Long Short-term Memory (LSTM), and Gated Recurrent Unit (GRU), are described below in detail. 
	 
	Elman Recurrent Neural Network (ELNN): Elman Recurrent Neural Network is believed to be the most basic version of RNN and is also called Simple RNN or Vanilla RNN (Bianchi et al., 2017).  
	Elman Recurrent Neural Network (ELNN): Elman Recurrent Neural Network is believed to be the most basic version of RNN and is also called Simple RNN or Vanilla RNN (Bianchi et al., 2017).  
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	 shows the architecture of an ELNN. It comprises of input and output layers with feedforward connections, and hidden layers with recurrent connections (Bianchi et al., 2017). ELNN also have h which are the input for the recurrent connection (Skansi, 2018). As stated by Bianchi et. al. (Bianchi et al., 2017), at time t, the update of the internal state and the output of the network is given by: 

	 
	h[t] = f (Whi (x[t] + bi) + Whh (h[t - 1] + bh) 
	 
	y[t] = g (Woh (h[t] + bo) 
	Equation 33 
	 
	where, Whi, Woh, and Whh are matrices representing the input, output, and hidden weights, respectively; x[t] is the input, y[t] is the output of the network; h[t] is the internal state, bi, bh, and bo, are bias vectors and f (∙) is the activation function of the neuron. (Bianchi et al., 2017). h[t] is generally initialized as a vector of zeroes, and it transfers the memory contents of the network at time t  (Bianchi et al., 2017). Pal and Prakash (Pal & Prakash, 2017) have stated that ELNNs suffer due to va
	 
	Long Short-Term Memory Recurrent Neural Networks (LSTM RNN):  As ELNN faces difficulty in effectively learning the long-range dependencies because of vanishing and exploding gradients, LSTMs were developed to resolve this issue (Pal & Prakash, 2017). LSTMs can accurately model long-term and short-dependencies in the data (Bianchi et al., 2017). They do not impose any bias towards recent observations and allow the constant error to flow back through time, and by doing this, it tries to resolve the issue of v
	 
	Bianchi et. al. (Bianchi et al., 2017) have explained that unlike the ERNNs, LSTMs apply a more elaborate internal processing unit, which is called the cell. They have further explained that a LSTM cell is made up of five different nonlinear components interacting in a definite manner. Additionally, a cell’s internal state is modified only by linear interactions, which allows smooth backpropagation of information across time (Bianchi et al., 2017).  
	Bianchi et. al. (Bianchi et al., 2017) have explained that unlike the ERNNs, LSTMs apply a more elaborate internal processing unit, which is called the cell. They have further explained that a LSTM cell is made up of five different nonlinear components interacting in a definite manner. Additionally, a cell’s internal state is modified only by linear interactions, which allows smooth backpropagation of information across time (Bianchi et al., 2017).  
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	 shows a cell in LSTM, where, xt and yt are the external input and external output of the cell respectively; ht-1, ht, yt-1, and yt are internal state variables; g1 and g2 are operators with nonlinear transformation, and σf ,σu, and σo are sigmoid in forget, update, and output gate respectively (Bianchi et al., 2017). 

	 
	Figure
	Figure 21: Cell of a LSTM (Bianchi et al., 2017) 
	 
	For protecting and controlling information in the cells, LSTM uses three gates, which are forget gate, input gate and output gate (Bianchi et al., 2017).  The information that must be removed from the previous cell state h[t-1] is decided by the forget gate, how much the new state h[t] must be updated by new candidate h͂[t] is decided by input gate, and the part of the state to be outputted is decided by the output gate (Bianchi et al., 2017). 
	 
	For updating the cell state and computing the output, the difference equations of forward pass, as given by Bianchi et. al. (Bianchi et al., 2017) are:  
	 
	Forget gate:   σf[t] = σ (Wf x[t] + Rfy[t −1] + bf) 
	Candidate state:  h͂[t] = g1(Whx[t] + Rhy[t −1] + bh) 
	Input gate:   σu[t] = σ (Wux[t] + Ruy[t −1] + bu) 
	Cell state:   h[t] = σu[t] (∙) h͂[t] + σf[t] (∙) h[t −1] 
	Output gate:   σo[t] = σ(Wox[t] + Roy[t −1] + bo), 
	Output:   y[t] = σo[t] (∙) g2(h[t]) 
	Equation 34 
	 
	where, x[t] is the input vector to the cell at time t; σ(·) denotes a sigmoid function; g1(·) and g2(·) are point wise nonlinear activation function, and (∙) is the entry wise multiplication between two vectors; Wo, Wu, Wh, and Wf are weight matrices applied to input of the cell; Ro, Ru, Rh, and Rf are weights matrices of the recurrent connections; bo, bu, bf, and bh are bias vectors (Bianchi et al., 2017).  
	 
	However, as per Skansi (Skansi, 2018), the interpretations of LSTM are just metamorphic and it very rarely works like a human brain. Bianchi et. al (Bianchi et al., 2017), have also pointed out 
	that practically, the forget and update gate of LSTM never opens or closes totally and contents of the cell may change over time. 
	 
	Gated Recurrent Unit Recurrent Neural Network (GRU RNN): Introduced in 2014, GRUs are a simpler version of LSTM and can resolve the issue of long-term dependencies in ELNNs (Pal & Prakash, 2017). GRUs are capable of adaptably capturing the dependencies at different time scales (Bianchi et al., 2017). As stated by Pal and Prakash (Pal & Prakash, 2017), GRU has fewer trainable weights than LSTM. 
	Gated Recurrent Unit Recurrent Neural Network (GRU RNN): Introduced in 2014, GRUs are a simpler version of LSTM and can resolve the issue of long-term dependencies in ELNNs (Pal & Prakash, 2017). GRUs are capable of adaptably capturing the dependencies at different time scales (Bianchi et al., 2017). As stated by Pal and Prakash (Pal & Prakash, 2017), GRU has fewer trainable weights than LSTM. 
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	 shows the architecture of a GRU cell. 

	 
	Figure
	Figure 22: Cell of a GRU (Bianchi et al., 2017) 
	 
	GRU has two gates, which are update gate, and reset gate (Pal & Prakash, 2017). The forget and input gates in LSTM are combined to form a single update gate in GRU (Bianchi et al., 2017). The function of update gate is to adaptively decide how much must be remembered or forgotten by the hidden units, while the memory of a cell can be reset by the reset gate (Bianchi et al., 2017). 
	 
	The state equations of GRU given by Bianchi et. al. (Bianchi et al., 2017) are: 
	 
	Reset gate:   r[t] = σ(Wrh[t −1] + Rrx[t] + br) 
	Current state:   h’[t] = h[t −1] (∙) r[t] 
	Candidate state:  z[t] = g(Wzh’[t −1] + Rzx[t] + bz) 
	Update gate:   u[t] = σ(Wuh[t −1] + Rux[t] + bu) 
	New state:   h[t] = (1−u[t]) (∙) h[t −1] + u[t] (∙) z[t] 
	Equation 35 
	 
	where, σ(·) denotes a sigmoid function; g1(·) and g2(·) are point wise nonlinear activation function, and (∙) is the entry wise multiplication between two vectors; Wu, Wz, Wr, Ru, Rz, and Rr 
	are weights matrices of the recurrent connections; bu, bz, and br are bias vectors (Bianchi et al., 2017). 
	 
	Optimization  
	Some kind of optimization is generally involved in the deep learning algorithms. However, the optimization algorithm used in deep models is quite different from the traditional optimization algorithms (Goodfellow et al., 2016). Unlike in pure optimization, in machine learning, a cost function J(θ) is reduced in order to improve some performance measure P, which is defined based on the test set (Goodfellow et al., 2016). An optimization algorithm is known as batch or deterministic gradient method if it uses 
	 
	Stochastic Gradient Descent (SGD): In contrast to gradient descent which follows downhill the gradient of the whole training set, SGD just uses randomly selected minibatches instead of the whole training set and hence, significantly accelerates the process (Goodfellow et al., 2016). Learning rate is the step size of following downhill and may be selected by trial and error or by observing the learning curve which plots the objective function as a function of time (Goodfellow et al., 2016). As per Goodfellow
	ĝ ← +(1/m)∇θ∑i L(f(x(i);θ),y(i)) 
	θ ← θ - єĝ 
	Equation 36 
	where y(i) is the target corresponding to a minibatch {x(1), ..., x(m)} of m examples taken from the training set (Goodfellow et al., 2016). 
	 
	Regularization 
	For machine learning models, the error measured on the training set is called training error, while that measured on the unobserved or new inputs is called generalization error or test error (Goodfellow et al., 2016). As per Goodfellow et. al. (Goodfellow et al., 2016), underfitting and overfitting are two challenges in machine learning. Underfitting is said to occur when the model is unable to get sufficiently low training error while overfitting occurs when there is a big gap between the training error an
	 
	As described by Goodfellow et. al. (Goodfellow et al., 2016), regularization refers to any change made in the learning algorithm to decrease its generalization error, but not the training error. There are various techniques described in the literature for applying regularization. Some of the regularization strategies for deep learning models discussed by Goodfellow et. al. (Goodfellow et al., 2016) includes parameter norm penalties, norm penalties as constrained optimization, data augmentation, noise robust
	and adversarial training. Dropout technique was used in the deep learning models that were developed in this study for predicting short-term delay at border crossings. Hence, in this section, only the regularization by dropout is discussed. 
	 
	Dropout is the technique used for improving the learning of neural networks and reduce overfitting (Skansi, 2018). Dropout can be applied by adding the dropout parameter π having a value between 0 and 1, and by doing so every weight will be set to zero with a probability of π in each epoch (Skansi, 2018). As per Goodfellow et. al. (Goodfellow et al., 2016), the advantages of dropout are that it is very computationally inexpensive and it does not restrict much the choice of model or training procedure that c
	 
	MODELING DATASET 
	The dataset used in this part of the research was obtained from the Niagara International Transportation Technology Coalition (NITTEC). It contains the traffic delay data for the U.S. bound car traffic moving over each of the three Niagara frontier border crossing bridges – the Peace Bridge, the Lewiston-Queenston Bridge, and the Rainbow Bridge. Delay data were recorded via BLUFAX Bluetooth readers at a frequency of one minute. For this study, the data used was collected from March 1, 2018, to December 31, 
	 
	The data had very few missing points, only 24, out of a total of 13,21,920 data points from all the three bridges combined, were missing. The missing values were filled by taking the average of the previous value and the next available value. By observing the data, it was found that traffic delay did not fluctuate much every minute and hence, it seemed rational to aggregate the data to five-minute intervals. This U.S. bound traffic delay data of ten months on the three bridges aggregated to five-minute inte
	 
	Further, to evaluate the effect of days of the week on traffic delay and also, to assess the ability of deep learning techniques to model categorized data, the complete set was split into ‘weekday set’ and ‘weekend set’. The weekday set consisted of the delay data only during weekdays, whereas the weekend set comprised of delay data only during weekends. Therefore, three set of data were available for the study – complete set, weekday set, and weekend set. The complete set, weekday set, and weekend set comp
	 
	Data Collection 
	The data used for this study was collected by the Bluetooth readers installed in recent years at the border crossings: The Peace Bridge, the Lewiston-Queenston Bridge, and Rainbow Bridge. This data had the information about the U.S. bound passenger cars’ traffic delay collected at an interval one minute. The Bluetooth wait time measurement system installed at the Peace Bridge and the Lewiston-Queenston Bridge crossings uses Traffax readers and FastLane BluFaxWeb software for computing the average wait time 
	 
	Bluetooth is a telecommunications industry specification that defines the way in which the digital devices can interconnect easily using short-range wireless communications (“tpa-na 
	Traffic Monitoring,” n.d.). The BluFax monitoring system can collect the travel times by sampling a portion of actual travel times from the traffic stream (“tpa-na Traffic Monitoring,” n.d.). It measures the travel times by matching the MAC addresses of Bluetooth devices at two different locations (“tpa-na Traffic Monitoring,” n.d.). 
	 
	As stated at tpa-na.com (“tpa-na Traffic Monitoring,” n.d.), Bluetooth devices have the following advantages over other existing methods: 
	 Unlike existing point detection technology, which includes inductive loops, radar detectors, image processors, etc., Bluetooth technology measures travel time directly by the equipment, and as a result, has greater accuracy (“tpa-na Traffic Monitoring,” n.d.). 
	 Unlike existing point detection technology, which includes inductive loops, radar detectors, image processors, etc., Bluetooth technology measures travel time directly by the equipment, and as a result, has greater accuracy (“tpa-na Traffic Monitoring,” n.d.). 
	 Unlike existing point detection technology, which includes inductive loops, radar detectors, image processors, etc., Bluetooth technology measures travel time directly by the equipment, and as a result, has greater accuracy (“tpa-na Traffic Monitoring,” n.d.). 

	 It can be applied globally because of the proliferation of the Bluetooth standard protocol (“tpa-na Traffic Monitoring,” n.d.). 
	 It can be applied globally because of the proliferation of the Bluetooth standard protocol (“tpa-na Traffic Monitoring,” n.d.). 

	 It can measure the travel times for different modes like highway vehicles, rail, and pedestrians because the Bluetooth devices are associated with people, not the vehicle (“tpa-na Traffic Monitoring,” n.d.). 
	 It can measure the travel times for different modes like highway vehicles, rail, and pedestrians because the Bluetooth devices are associated with people, not the vehicle (“tpa-na Traffic Monitoring,” n.d.). 

	 As there are no databases of Bluetooth addresses, Bluetooth technology offers more privacy than toll tag tracking, cellular telephone geolocation, or license plate surveys (“tpa-na Traffic Monitoring,” n.d.). 
	 As there are no databases of Bluetooth addresses, Bluetooth technology offers more privacy than toll tag tracking, cellular telephone geolocation, or license plate surveys (“tpa-na Traffic Monitoring,” n.d.). 

	 The field installation procedure is simple (“tpa-na Traffic Monitoring,” n.d.). 
	 The field installation procedure is simple (“tpa-na Traffic Monitoring,” n.d.). 
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	, shows the location of Bluetooth reader installation at the different bridges. The information about this location was provided by NITTEC.  
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	Figure 23: Location of Bluetooth readers at Peace Bridge 
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	Figure 24. Location of Bluetooth readers at Queenston Lewiston Bridge 
	 
	 
	 
	Figure
	Figure 25. Location of Bluetooth readers at Rainbow Bridge 
	MODEL DEVELOPMENT 
	In this study, the short-term car traffic delay was predicted by forecasting time series using the deep learning methods, namely Multilayer Perceptron (MLP), Convolutional Neural Networks (CNN), Long Short-Term Memory Recurrent Neural Networks (LSTM RNN), and Gated Recurrent Unit Recurrent Neural Networks (GRU RNN).  
	 
	Each modeling dataset (complete set, weekday set, and weekend set) was split into train set, validation set, and test set. The train set was used for training the models. The validation set was used for selecting the hyperparameters by comparing the performance of various models to select the best one. Lastly, the test set was used to report the results from the selected model. The first 60% of the dataset formed the train set, the next 20% was used as a validation set and the last 20% as a test set.   
	 
	The dataset that was fed into the model was a time series of traffic delay (in minutes) at every 5 minute interval. The model takes traffic delay at prior time steps as its input and outputs the traffic delay predicted for the future. The model was developed such that it outputs the predicted delay for the next 12 time steps. Therefore, the model output is the predicted traffic delay for the next 5 minutes, 10 minutes, 15 minutes, and so on till the next 60 minutes in the future. The number of prior time st
	 
	The models developed trained using the whole data or complete data are called ‘complete set’ models. The models trained only on weekday data are called ‘weekdays’ model and those trained only on weekend data are called ‘weekends’model. The predicted delays obtained from the models were compared with the actual delay to evaluate the predictive accuracy of deep learning models, compare the performance of the four deep learning techniques and to find the effect of data classification on model’s prediction accu
	 
	The models developed for this study were build using Keras (v2.2.2) deep learning library, backend by TensorFlow (v1.9.0) in the programming language Python (v3.5.6) on a computer with 8.00 GB RAM and Intel®Core™i56200U CPU. The various libraries used in the python codes includes scikit-learn, numpy, matplotlib, pandas, and math. The python codes used in this study for developing and comparing the deep learning models are inspired by the codes presented by (Brownlee, 2016, 2018; Pal & Prakash, 2017). Additi
	  
	MODEL RESULTS 
	This section provides the results of the deep learning models developed to predict the U.S. bound car traffic delay at the three border crossings between the U.S. and Canada – Peace Bridge (PB), Lewiston-Queenston Bridge (QL), and Rainbow Bridge (RB). The prediction performance of models was measured by the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R squared (R2). The results obtained from each of the deep learning models are presented in detail in the subsequent sub-sections.           
	                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
	Multilayer Perceptron (MLP) 
	The MLP model was developed to predict the U.S. bound car traffic delay for the next 5 minutes, 10 minutes, 15 minutes, … up to 60 minutes. However, for simplicity, the model results of only next 5, 15, 30, 45, and 60 are shown in 
	The MLP model was developed to predict the U.S. bound car traffic delay for the next 5 minutes, 10 minutes, 15 minutes, … up to 60 minutes. However, for simplicity, the model results of only next 5, 15, 30, 45, and 60 are shown in 
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	Table 7 : MLP model result 
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	, and considering all time horizons, it can be seen that MAEs of weekdays are mostly less than those of their corresponding complete set (for 5 minute prediction in particular, MAEs of the complete set were actually less than those of their corresponding weekdays). Additionally, it can be noted that except for a few predictions, the MAEs of weekends are the highest among the three datasets of the same bridge and prediction horizon. 
	 
	It can also be observed that with the increase of prediction horizon, MAE has always increased while R squared has always decreased for all datasets and all bridges. This, to be expected, decrease in the prediction accuracy with the increase in prediction horizon is reflected in 
	It can also be observed that with the increase of prediction horizon, MAE has always increased while R squared has always decreased for all datasets and all bridges. This, to be expected, decrease in the prediction accuracy with the increase in prediction horizon is reflected in 
	Figure 26
	Figure 26

	 and 
	Figure 27
	Figure 27

	. 
	Figure 26
	Figure 26

	 and 
	Figure 27
	Figure 27

	 compare the actual delay with the predicted delay for the next 5 and 30 minutes respectively. It can be seen that the model is able to very well follow the actual delay in the case of the next 5 minute delay prediction, while its performance has decreased when predicting 30 minutes into the future, especially for the high peaks arriving abruptly.  

	 
	Figure
	Figure 26. Comparing the actual U.S. bound traffic delay with 5 minutes ahead prediction of delay by the MLP model at Peace Bridge for a sample of 180 data points  
	 
	 
	Figure
	Figure 27: Comparing the actual U.S. bound traffic delay with 30 minutes ahead prediction of delay by the MLP model at Peace Bridge for a sample of 180 data points 
	 
	  
	Convolutional Neural Networks (CNN) 
	shows the model results of the CNN model in predicting delay for the next 5, 15, 30. 45, and 60 minutes. From 
	shows the model results of the CNN model in predicting delay for the next 5, 15, 30. 45, and 60 minutes. From 
	Table 8
	Table 8

	, it is clear that the MAEs of weekdays are mostly lesser their corresponding complete set, whereas, weekends always had the highest MAE among the three datasets of the same bridge and same prediction horizon. 

	 
	Table 8: CNN model results 
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	Similar to MLPs, the MAEs have always increased and R squared has always decreased with the increase in prediction horizon. The longest computation time for any CNN model developed in this study was 484.07 seconds, while the minimum was 124.1 seconds. 
	 
	Figure 28
	Figure 28
	Figure 28

	 compares the actual and predicted delay for the next 30 minutes by the CNN model. It can be seen from 
	Figure 28
	Figure 28

	,  that the prediction made by this model is able to follow the trend of the time series.  

	 
	Figure
	Figure 28. Comparing the actual U.S. bound traffic delay with 30 minutes ahead prediction of delay by CNN model at Peace Bridge for a sample of 180 data points 
	 
	Long Short-Term Memory Recurrent Neural Networks (LSTM RNN)  
	The model results of LSTM RNN model are tabulated in 
	The model results of LSTM RNN model are tabulated in 
	Table 9
	Table 9

	. From 
	Table 9
	Table 9

	 it can be noted that the MAE of weekdays are always the least among the whole set or the weekends, while the weekends are often the highest. With the increase in the prediction horizon, the MAEs have increased, while R squared has reduced. The computation time of LSTM RNN models developed in this study varied from 50.41 seconds to 184.07 seconds. 
	 
	 


	 
	 

	 
	 

	Figure
	Figure 29
	Figure 29
	 shows the graphical representation of actual delay and delay predicted by LSTM RNN model. The graph shows the ability of the model to tune its prediction with the changes in the prior time steps of the time series. 

	 
	Table 9. LSTM RNN model results 
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	Figure
	Figure 29 : Comparing the actual U.S. bound traffic delay with 30 minutes ahead prediction of delay by LSTM RNN model at Peace Bridge for a sample of 180 data points 
	 
	Gated Recurrent Unit Recurrent Neural Networks (GRU RNN) 
	Table 10
	Table 10
	Table 10

	 shows the prediction results for the next 5, 15, 30, and 45 minutes, where it can be seen that the MAEs of weekdays are usually less than that of their corresponding complete set. Similar to the MLP, CNN, and LSTM RNN, the MAE and R squared of GRU RNN increases and reduces respectively with the increase in prediction horizon. The computation time of GRU RNNs developed for this study ranges between 30.09 seconds and 173.5 seconds.  

	 
	Table 10: GRU RNN model results 
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	Figure 30
	Figure 30
	Figure 30

	 shows the graphical representation of actual delay and delay predicted by GRU RNN model for the next 30 minutes, where it can be seen that the predicted values mostly follow the actual delay but misses out abrupt peaks.  

	 
	 
	Figure
	Figure 30: Comparing the actual U.S. bound traffic delay with 30 minutes ahead prediction of delay by GRU RNN model at Peace Bridge for a sample of 180 data points 
	 
	MODEL COMPARISON 
	To find the most suitable deep learning technique in predicting short term delay, the model results of the four techniques used in this study were compared for all three bridges and for different prediction horizons. 
	To find the most suitable deep learning technique in predicting short term delay, the model results of the four techniques used in this study were compared for all three bridges and for different prediction horizons. 
	Figure 31
	Figure 31

	and 
	Figure 32
	Figure 32

	 compare the four techniques based on the MAEs of the predicted delay at each bridge for 30 minutes ahead and 60 minutes ahead prediction respectively.    

	 
	From 
	From 
	Figure 31
	Figure 31

	, it can be noticed that the lowest MAE for the next 30 minute prediction at PB and RB were obtained from LSTM RNN and MLP models, respectively. Whereas, both CNN and GRU RNN models gave the lowest MAE for 30-minute prediction at QL. Further, from 
	Figure 32
	Figure 32

	 it can be seen that the lowest MAE for the next 60-minute prediction at PB, QL, and 

	RB were given by MLP, LSTM RNN, and CNN model, respectively. Clearly, there does not seem to be an absolute winner among these techniques.    
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	Figure 31: Comparing MAE of delay prediction for next 30 minutes by MLP, CNN, LSTM-RNN, and GRU-RNN at PB, QL, and RB  
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	Figure 32: Comparing MAE of delay prediction for the next 60 minutes by MLP, CNN, LSTM-RNN, and GRU-RNN at PB, QL, and RB 
	  
	As mentioned earlier, the delays at prior time steps were fed into the model as input. The number of prior time steps that were fed into the models was considered as one of the hyper-parameters of the model, which were selected using manual hyper-parameter tuning. In other words, the study tried using different numbers of prior time steps as input, and evaluated the results in order to determine the best number of prior time steps that should be used. 
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	 shows the number of prior time steps that gave the time steps for each model. It must be noted here that each time step represents a 5-minute interval.  Hence, for instance, 12-time steps would refer to 12 X 5 = 60 minutes, i.e., delays for the last 60 minutes. 
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	EFFECT OF DATA CLASSIFICATION ON MODEL RESULTS 
	As previously mentioned, the traffic delay time series dataset was classified into weekdays and weekends and thus, three different types of models were developed using the three datasets, which were: the complete or the whole set, the weekdays dataset, and the weekends dataset. This section presents the results of the analysis done to investigate the effect of data classification on model results.  
	 
	The model performance of the complete set models may be compared with weekdays and weekends models by simply comparing the MAEs in their prediction. However, this might not give the most accurate results as it involves oversampling. This is because the MAEs obtained from the complete set models take into account both weekdays and weekends data. To evaluate the effect of data classification on the performance of deep learning models in a way that avoids the problem of oversampling, the models were run again 
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	 shows the comparison of the MAEs in the prediction of weekday data points and weekend data points of the complete set models with the MAEs in the prediction of the same data points by the weekday and weekend model respectively for 30 minutes ahead U.S. bound traffic delay prediction at PB. From 
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	, it can be seen that the MAEs of the weekday data points for the complete data set were consistently either less than (or equal to) those obtained for the weekday-specific model.  On the other hand, the MAE for the weekend data-points for the complete set did not show a consistent trend, with the values for the complete set less than the weekend-specific model for MLP and LSTM-RNN, and greater than the weekend-specific model for CNN and GRU-RNN.  
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	Table 12: Comparison of MAEs of specific data points in the prediction of delay 30 minutes in future at PB by different models 
	 
	To further analyze the effect of data classification, the same comparison was made for predictions 60 minutes in the future, as shown in 
	To further analyze the effect of data classification, the same comparison was made for predictions 60 minutes in the future, as shown in 
	Table 13
	Table 13

	. 

	 
	Table
	TBody
	TR
	Span
	Models 
	Models 

	Complete set 
	Complete set 

	Weekdays 
	Weekdays 

	Weekends 
	Weekends 


	TR
	Span
	Weekday data points 
	Weekday data points 

	Weekend data points 
	Weekend data points 


	TR
	Span
	MLP 
	MLP 

	2.33 
	2.33 

	3.96 
	3.96 

	2.38 
	2.38 

	4.13 
	4.13 


	TR
	Span
	CNN 
	CNN 

	2.5 
	2.5 

	4.1 
	4.1 

	2.56 
	2.56 

	4.05 
	4.05 


	TR
	Span
	LSTM-RNN 
	LSTM-RNN 

	2.45 
	2.45 

	3.91 
	3.91 

	2.48 
	2.48 

	4 
	4 


	TR
	Span
	GRU-RNN 
	GRU-RNN 

	2.3 
	2.3 

	4.01 
	4.01 

	2.52 
	2.52 

	4.06 
	4.06 
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	, it was observed that mostly the MAEs of the weekday data points and weekend data points of complete set were lesser than the MAEs of weekdays model and weekends model respectively. However, there are exceptions to this. In all, it doesn’t seem that the data classification increases the predictive accuracy of the models.  

	 
	DISCUSSION 
	To the best of our knowledge, our study is the first time that (1) Bluetooth Data from the three Niagara Frontier Border Crossings are used for predicting the border crossing delay, and (2) Deep Learning techniques like CNN, LSTM-RNN, and GRU-RNN are used for predicting delay at the border crossings. The models developed in this study predict delay for next 5, 10, 15, … 
	and so on up to 60 minutes into the future. This information can guide the travelers in selecting the border crossing based on the delay situation. Travelers might have the tendency to choose the border crossing with the least delay and this would help in the uniform distribution of traffic across the crossings. Lin et al. (Lin, Wang, Sadek, et al., 2014) also emphasized on the necessity of predicting the future border crossing delay, which can be helpful for the border crossing authorities in determining t
	 
	The delay prediction process used in this study did not include any data cleaning. The delays were just aggregated to 5 minutes and were fed to the models as an input. This makes the model development and prediction process very straight forward and easy. Unlike some of the previous studies (A. M. Khan, 2010; Lin F. B. & Lin M. W., 2001), the delay is predicted by models that were developed (trained, validated, and tested) using field data collected by the Bluetooth readers. Also for the delay analysis part
	 
	The current study differs in many ways from the previous studies which aimed to predict the delays at the border crossings. Lin and Lin (Lin F. B. & Lin M. W., 2001) proposed a delay model which was based on various factors like vehicle processing capacity of a toll gate or inspection gate, volume/capacity ratio, number of available gates, etc. However, the models developed in the current study can predict delay by just using previous delays. Khan (A. M. Khan, 2010) and Moniruzzaman et. al. (Moniruzzaman et
	 
	Moniruzzaman et. al. (Moniruzzaman et al., 2016) forecasted the crossing times for trucks at the Ambassador Bridge border crossing through the ANN model and the training of the model relied on lags of crossing time, truck volume on the bridge, hours of day, and day of week. In contrast, the current study predicted the delays for the passenger cars on the Niagara Frontier Border Crossings.  Another difference is that the training of models in the current study was based purely on previous delays at the cross
	In this study, the delays are predicted directly using the delay data collected from the Bluetooth readers. This can be seen as an improvement over the stepwise border crossing delay prediction model suggested in some of the past studies (Lin, Wang, & Sadek, 2014; Lin, Wang, Sadek, et al., 2014), in which first the future volumes were predicted using past volumes and then using the predicted future volumes, future delay were forecasted. This simplicity in the procedure is also reflected in the prediction ac
	 
	The results from this study suggest high-level accuracy of the deep learning techniques in predicting future traffic delays at the border crossings, with MAEs less than 3.5 minutes in predicting delays for up to 60 minutes into the future by complete set models. Previous studies (Dalto et al., 2015; Fu et al., 2016; Koprinska et al., 2018; Ma et al., 2015) have also supported the superior prediction performance of some of the techniques used in this study. However, prediction-wise, no one deep learning tech
	 
	CONCLUSIONS AND FUTURE WORK 
	Traffic delays at the United States-Canada border crossings have adverse effects on the economy as well as the environment. There have been some studies in the past which aimed to analyze the delay at the Niagara Frontier Border Crossings (Zhang & Lin, 2017; Zhang et al., 2017) and others which predicted the future delay/crossing time at the border crossings (A. M. Khan, 2010; Lin F. B. & Lin M. W., 2001; Lin, Wang, & Sadek, 2014; Lin, Wang, Sadek, et al., 2014; Moniruzzaman et al., 2016). This study was in
	 
	This study predicted passenger cars’ traffic delays at the three Niagara Frontier Border Crossings, namely the Peace Bridge, the Lewiston-Queenston Bridge, and the Rainbow Bridge for the next 60 minutes into the future.  This was based upon border wait time data collected by Bluetooth readers recently installed at the crossings. Border crossing traffic delays were predicted using four deep learning techniques, namely Multilayer Perceptron (MLP), Convolutional Neural Networks (CNN), Long Short-Term Memory Re
	 
	Limitations and Future Work 
	The current study focused on predicting future delay using four deep learning techniques, namely MLP, CNN, LSTM-RNN, and GRU-RNN. This task can also be performed by using some other 
	deep learning techniques so as to explore the prediction performance of those techniques. This research can also be extended by making predictions using statistical models and comparing their performance with the techniques employed in the current study. This can help in conducting comparative analysis among the deep learning techniques and statistical models. 
	 
	In the current study, predictions were made using just previous delay as input to the deep learning models. The prediction performance can be improved by adding more input variables like car volume, number of open lanes, weather information, holidays, traffic accidents, etc. Lastly, similar future delay predicting models can also be developed for Canada bound traffic over the Niagara Frontier Border Crossings. Additionally, this work can be extended to other border crossings as well. 
	 
	STUDY’S CONCLUSIONS 
	This project was intended to take advantage of the wealth of data, now available thanks to the recent advances in sensing and communications, to develop predictive models for predicting border crossing delays at the Niagara Frontier border crossing. Specifically, the project first developed an Android smartphone application to collect, share and predict waiting time at the three border crossings.  Secondly, models, based on state-of-the-art Machine Learning (ML) techniques, were developed for interval predi
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